Reconstructing Hidden Permutations Using the Average-Precision (AP) Correlation Statistic

Lorenzo De Stefani, Alessandro Epasto, Eli Upfal (Brown Uuniversity), Fabio Vandin (University of Padova) {lorenzo, epasto, eli} @cs.brown.edu, vadinfa@dei.unipd.it

MOTIVATION

Probabilistic models of rankings studied in:

- social sciences
- statistics
- machine learning
- computer science

Applications include: • understanding user preferences

THE MALLOWS MODEL

In the Mallows model $\mathcal{M}(\beta, \pi)$, the probability of observing a permutation σ is inversely proportional to its tau distance from a central ("ground truth") permutation π

normalization coefficient

The **tau distance** $d_k(\pi, \sigma)$ between permutations counts the number of items whose order is inverted

> All inversions are weighted in the same way!

- ordering web search results
- aggregating crowd-sourcing data
- optimizing recommendation systems results

Most work in literature focused on the Mallows model.

In many cases, the **order** of items at the **top of the ranking** is **more** significant than the order of the items at the bottom!

THE AP - MODEL

We propose the new AP-model which uses the AP-statistics as measure of distance between permutations

$$\Pr_{\mathcal{M}_{AP}(\beta,\pi)}(\sigma) = Z_{\beta}^{-1} \exp\left(-\beta d_{AP}(\pi,\sigma)\right)$$

 $d_{\mathcal{AP}}(\pi,\sigma) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E_{ij} \frac{n}{2(j-1)}$

The **AP-statistics** counts inversions **weighting** them according to the position of the swapped items in the central permutation π

 $E_{ij} = 1$ iff the the *i*-th element of π is ranked after the *j*-th element of π in σ

ALGORITHMS

We provide efficient algorithms for reconstructing the central permutation π on *n* items from $\mathcal{O}(\log_2 n)$ observations

APPLICATION TO CLUSTERING

We use the AP-model estimators for an **unsupervised clustering algorithm** based on k-means.

- We apply the algorithm to cluster web pages
- Purity and ROC converge to over 80% after a few iterations
- Our approach is resilient to noise in the lower position of the rankings

APPLICATION TO CLASSIFICATION

It has been observed that in the context of high-dimensional gene expressions data ($> 10^4$ genes), the relative order of the genes is more important than their absolute magnitude.

Dataset	Prec. Tau	Prec. AP
BC1	0.662	0.674
BC2	0.621	0.601
CT	0.848	0.868
LA1	0.666	0.685
LC2	0.986	0.993
MB	0.613	0.648
OV	0.836	0.817

- We use the AP-model to **classify** gene expressions into one of two binary classes (e.g., "Normal vs. Tumor")
- AP distance improves over tau distance-based methods for most

datasets!

