
Mining Frequent Itemsets through Sampling with Rademacher Averages
Matteo Riondato (Two Sigma Investments, matteo@twosigma.com) and Eli Upfal (Department of Computer Science, Brown University, eli@cs.brown.edu)

1. What problem to we study?
Frequent Itemsets Mining: classic problem with many applications
Dataset D
bread, milk
bread, beer, eggs
milk, beer, coke
bread, milk, beer
bread, milk, coke

Each line is a transaction of items from a set I
An itemset is a subset of I
The frequency fD(A) of itemset A is the fraction of
transactions containing A
E.g.: fD({bread,milk}) = 3/5 = 0.6

Problem (Frequent Itemsets (FI) Mining):
Given θ ∈ [0, 1] find (i.e., mine) all itemsets A ⊆ I with fD(A) ≥ θ
I.e., compute the set FI(D, θ) = {A ⊆ I : fD(A) ≥ θ}

There are exact algorithms for FI mining (Apriori, FP-Growth, . . .)

2. How to make FI Mining faster?
Exact algorithms do not scale with |D|:
They scan D multiple times: slow on large D

How to get faster? Trade-off accuracy for speed:
Only mine random samples of D that fit in main memory

Results are approximate but fast to compute
Approximation is OK: FI mining is a exploratory task

Key question:
How much to sample to get an approximation of the desired quality?

Our contribution:
A fast approximation algorithm for FI mining that uses Progressive

Random Sampling and Rademacher Averages and has probabilistic
guarantees on the accuracy of the output

3. How to define an approximation of the FIs?
For ε, δ ∈ (0, 1), a (ε, δ)-approximation to FI(D, θ) is a collection C of
itemsets s.t., with prob. ≥ 1− δ:

“Close” False Positives are allowed, but no False Negatives
C can act as set of candidate FIs to prune with fast scan of D

Our approximation algorithm for FI mining returns an (ε, δ)-approximation
to FI(D, θ) by using Progressive Random Sampling

4. What is Progressive Random Sampling (PRS)?
How much to sample from D to obtain an (ε, δ)-approximation?

Prev. works: loose sample size for worst-case dataset
Instead, let’s start sampling: the data will tell us when to stop

Progressive Random Sampling is an iterative sampling scheme

Outline of PRS algorithm for approximating FI(D, θ)
At each iteration,

1 create sample S by drawing transactions from D uniformly and
independently at random

2 Check a stopping condition on S, to see if can get
(ε, δ)-approximation from it

3 If stopping condition is satisfied,
mine FI(S, γ) for some γ < θ and output it

4 Else, iterate with a larger sample

5. What are the challenges? What is our contribution?
The challenges are:

Developing a stopping condition that
can be checked without expensive mining of each sample
guarantees that the output is a (ε, δ)-approximation
can be satisfied at small sample sizes

Devising a method to choose the next sample size
Our contribution: We present the first algorithm that

uses a stopping condition that does not mine each sample
uses PRS to obtain an (ε, δ)-approximation of FI(D, θ)
computes the optimal next sample size on the fly

Previous contributions gave no guarantees and/or required mining FIs from
each sample (too expensive). They used predefined sample sizes

6. What do we really need?
We need an efficient procedure that, given a sample S of D, computes a
value η s.t.

Pr
(

sup
A⊆I
|fD(A)− fS(A)| ≤ η

)
≥ 1− δ

Then the stopping condition just tests if η≤ε/2

Theorem: If η ≤ ε/2, then FI(S, θ − ε/2︸ ︷︷ ︸
γ

) is an (ε, δ)-approximation

to FI(D,I, θ)
Proof (by picture)

How to compute η? Study statistics, learn about Rademacher Averages!

6. What are Rademacher Averages?
The behavior of | supA⊆I |fD(A)− fS(A)| has been extensively studied
using VC-dimension, covering numbers, and Rademacher averages

For any itemset A and any transaction τ ∈ D, let

φA(τ) =
{

1 if A ⊆ τ
0 otherwise

Let S = {τ1, . . . , τn} be a random sample of D, and let σ1, . . . , σn be
independent Rademacher r.v. (1 with prob. 1/2, -1 othw.)
The Rademacher Average on S is:

R(S) = Eσ

 sup
A⊆I

1
n

n∑
i=1

σiφA(τi) | S

The expectation is taken wrt the σi , i.e., conditionally on S

7. How to use the Rademacher average?
Theorem (Key result from Statistical Learning Theory): Let

η = 2R(S) +

√
2 ln(2/δ)

n
Then

Pr(sup
A⊆I
|fD(A)− fS(A)| ≤ ηS) ≥ 1− δ

η is a sample-dependent upper bound to supA⊆I |fD(A)− fS(A)|

The key question is: how do we compute or bound R(S)?
Computing R(S) efficiently allows us to compute η and check our

stopping condition efficiently

8a. How can we bound the Rademacher average? (High-level)
We compute an upper bound to the distribution of the frequencies in S of
the Closed Itemsets (CIs) in S (An itemset is closed iff none of its supersets
has the same frequency)
Connection with the CIs:
sup
A⊆I
|fD(A)− fS(A)| = sup

A∈CIs
|fD(A)− fS(A)|

Efficiency Constraint: use only information that can be obtained with a
single scan of S
How:

1 We use the frequency of the single items and the lengths of the
transactions to define a (conceptual) partitioning of the CIs into
classes, and to compute upper bounds to the size of each class and to
the frequencies of the CIs in the class

2 We use these bounds to compute an upper bound to R(S) by
minimizing a convex function in R+ (no constraints)

8b. How to bound the Rademacher Averages? (In-depth)
For any itemset A ⊆ I , let vS(A) be the n-dimensional vector

vS(A) = (φA(τ1), . . . , φA(τn)),
and let VS = {vS(A),A ⊆ I} (VS is a set)
Theorem (Variant of Massart’s Lemma):
Let w : R+→ R+ be the function

w(s) =
1
s

ln
∑

v∈VS

exp(s2‖v‖2/(2n2))

Then
R(S) ≤ min

s∈R+
w(s)

Since w̃ is convex, its global minimum can be found efficiently

What does the set of vectors VS look like?
Let CI(S) be the set of all Closed Itemsets in S
Lemma: VS contains all and only the vectors vS(A) for all A ∈ CI(S).
Issue: Can not mine CI(S) to compute w(s): it is too expensive!
Solution: Define a function w̃(s) efficient to compute and minimize and
s.t. w̃(s) ≥ w(s) for all s. Then use w̃(s) to compute ηS
We define a partitioning P of CI(S)

Assume an ordering <I of I . For any a ∈ I , assume an ordering <a
of the transactions of S that contain a
For any A ∈ CI(S), let a ∈ A be the item in A that comes first wrt
<I , and let τ be the transaction containing A that comes first wrt
<a. We assign A to the class Pa,τ

For each class Pa,τ we
compute an upper bound to |Pa,τ | using |τ | and <a
use fS(a) as upper bound to fS(A), for A ∈ Pa,τ
Very efficient to compute fS(a) while creating the sample

The new function w̃ used to compute R(S) is:

w̃(s) =
1
s

ln
∑

a∈IS

1 +
χa∑

r=1

ga,r∑
j=1

2min{r ,ha,r−j}

 e
s2fS(a)

2n

Then

ηS = min
s∈R+

w̃(s) +

√
2 ln(2/δ)

n

9. How do we choose the next sample size?
We can compute the next sample size on the fly
First iteration: Use a sample of size at least 8 ln(2/δ)ε−2

Why? It is impossible that η ≤ ε/2 at smaller sample sizes
Successive iterations:
multiply the sample size from the previous iteration by (2η/ε)2

Intuition: If the frequencies of the items in the current iteration and the
distribution of the transaction lengths are the same as in the previous
iteration, then the stopping condition will be satisfied at this iteration

12. Experimental Evaluation
Implementation and Datasets: Sampling and stopping condition
implemented in C++11, FIs mining using existing C implementation,
NLOpt for minimization step. Implementation available from
http://cs.brown.edu/~matteo/radeprogrfi.tar.bz2. Datasets
from the FIMI’03 repository. Experiments run on a machine with a
quad-core AMD PhenomTM II X4 955 processor and 16GB of RAM,
running GNU/Linux 3.2.0

Recall: in 10K+ runs, always returned an ε-approx., not just with prob.
1− δ. All itemsets from FI(D, θ) are in output: the recall is always 100%

Precision: Algorithm gives no guarantee. Varied between 15% and 92%,
depending on the parameters and on the dataset. Price to pay when mining
a subset of transactions. The output can be used as a set of candidates
from which to compute efficiently the exact collection of FIs with a single
linear scan of the dataset (negligible cost)

0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.0E+0

5.0E+5

1.0E+6

1.5E+6

2.0E+6

2.5E+6

3.0E+6

3.5E+6

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

FI
possible FP
avg FP
ratio

epsilon

ite
m

se
ts

ra
tio

Figure: Precision for connect, θ = 0.72

Frequency Estimation: For each itemset A in output, we measure the
absolute frequency error. Average and maximum abs. error are almost 10x
less than ε/2 and very concentrated. We also measure the relative
frequency error (right axis): it is always less than 1.4%

0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022
0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0

0.2

0.4

0.6

0.8

1

1.2

1.4max
avg + stdev
avg
max rel
avg rel

epsilon

ab
so

lu
te

 fr
eq

. e
rr

or

re
la

tiv
e

fr
eq

. e
rr

or

Figure: Frequency error for retail, θ = 0.015

Runtime: We compare the running time of our algorithm to that of a
one-shot sampling approach (VC), to that of FP-Growth, and to the
running time of our algorithm using a geometric sampling schedule
|Si | = αi |S1| for α ∈ {2, 2.5, 3} (to evaluate the automatic sample
schedule). Our algorithm (avg line) vastly outperforms the exact algorithm
and VC. The automatic sampling schedule is more efficient than the
geometric sample schedule by avoiding the creation and analysis of samples
whose size is probably not sufficient for the stopping condition to be
satisfied, based on information obtained from the current sample

0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.0E+0

2.0E+4

4.0E+4

6.0E+4

8.0E+4

1.0E+5

1.2E+5

1.4E+5

1.6E+5

exact
vc
geom-2.0
geom-2.5
geom-3.0
avg

epsilon

to
ta

l
ru

n
ti

m
e
 (

m
s)

Figure: Running time for BMS-POS, θ = 0.015

We also analyze the breakdown of the runtime of our algorithm, splitting it
between time needed to sample the transaction, time needed to evaluate
the stopping condition, and time needed to perform the mining of the
sample after the stopping condition is satisfied

0.01 0.012 0.015 0.017 0.02
0.0E+0
1.0E+4
2.0E+4
3.0E+4
4.0E+4
5.0E+4
6.0E+4
7.0E+4
8.0E+4
9.0E+4
1.0E+5

mining
stop. condition
sampling

epsilon

ru
nt

im
e

(m
s)

Figure: Breakdown of runtime for pumsb_star, θ = 0.32.

11. Future Work
Improve bound to the Rademacher Average by studying the orderings and
the function w̃

Improve the automatic sample schedule by better taking into account the
behavior of w̃

Provide multiplicative error guarantees

Extend to other measures of interestingness not bounded by anti-monotonic
functions

Acknowledgements
This work was supported, in part, by NSF grant IIS-1247581 and NIH grant
R01-CA180776

Extended Version
Available from http://goo.gl/a7dceX

matteo@twosigma.com
eli@cs.brown.edu
http://cs.brown.edu/~matteo/radeprogrfi.tar.bz2
http://goo.gl/a7dceX

