
ABRA: Approximating Betweenness Centrality through Sampling with Rademacher Averages
Matteo Riondato (Two Sigma Investments LP, matteo@twosigma.com) Eli Upfal (Department of Computer Science, Brown University, eli@cs.brown.edu)

22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’16)

1. What problem are we studying?
Motivation: Identifying the most important vertices in a graph allows us to
study properties such as network robustness, information diffusion, and
influence propagation, that give important insights on the structure and the
dynamics of the graph
Example: Find most influential CEOs, most informed journalists, most
central locations in a city, most linked websites, etc.
Let G = (V ,E) be a graph, with |V | = n nodes and |E | = m edges
To find the most important, i.e., central, vertices in G we need a measure
of importance, i.e., a centrality measure that assigns a score to each vertex,
based on some of concept of importance (using degree, distance, . . .)
Betweenness centrality uses information on Shortest Paths (SP) distance to
assign the score
For each pair of different nodes (u,w) ∈ V × V let:

σuw : no. of Shortest Paths (SP) from u to w
σuw(v): no. of SPs from u to w that go through a node v 6= u,w

Definition: Betweenness Centrality (bc) of v ∈ V :

b(v) =
1

n(n − 1)
∑
u,w

σuw(v)
σuw

Task: Compute the betweenness centrality score b(v) for all nodes v ∈ V

2. How can we compute all the bc’s exactly?
Naïve Algorithm:
All-Pairs SP + Aggregation (sum for each node)
Takes Θ(n3) due to the aggregation
Brandes’ Algorithm (BA, [Brandes, 2001]):
For each node v ∈ V :
1) Run Single Source SP from v
2) Backtrack along SP DAG,
appropriately incrementing BC of nodes along the SPs.

Takes O(n2m) (unweighted G) or O(n2m + n2 log n) (weighted G)
Issue: Exact algorithms do not scale with |V |

3. How can we speed up bc computation?
Intuition: Trade-off accuracy for speed:
Only perform a few SPs computations between pairs of nodes (u,w)

sampled at random
Computed BC values are approximate but fast to compute
Approximation is OK: centrality computation is a exploratory task

Key question:
How many pairs to sample to get an approximation of the desired quality?

Our contribution:
ABRA: a fast approximation algorithm for BC that uses Progressive

Random Sampling and Rademacher Averages to obtain probabilistic
guarantees on the accuracy of the output

4. How do we define an approximation of the bc’s?
Let B = {b(v), v ∈ V} (B is a bag: |B| = n), and ε, δ ∈ (0, 1)
Definition: (ε, δ)-approximation to B:
A set B̃ = {b̃(v), v ∈ V} s.t.

Pr(∃v ∈ V : |b̃(v)− b(v)| > ε) < δ

ABRA returns an (ε, δ)-approximation to B
It uses Progressive Random Sampling to decide how much to sample

5. What is Progressive Random Sampling (PRS)?
How much shall we sample in order to obtain an (ε, δ)-approximation?
State of the art (RK [R. and Kornaropoulos, 2015]):

sample single SPs at each step: lots of wasted work
use fixed sample size for worst-case graphs

This work (ABRA):
samples pairs of nodes, and uses all SPs among them
PRS: let’s start sampling: the data will tell us when to stop

Progressive Random Sampling is an iterative sampling scheme
Outline of a PRS algorithm for bc centrality

Initialize c(v) = 0, for all v ∈ V
Repeat until the stopping condition is satisfied:
1 sample a pair (u,w) from V × V uniformly at random
2 run s − t SP from u to w (e.g., with BFS, Dijkstra, A*, . . .)
3 If w is reached, backtrack from w to u, incrementing c(v) by σuw(v)/σuv for

nodes v along the SPs
Let ` be the number of sampled pairs
Output the collection {b̃(v) = c(v)/`, v ∈ V}

In reality, multiple samples are collected at each iteration, according to a
sample schedule (a sequence of sample sizes), and the stopping condition is
only checked once per iteration
ABRA implements the above scheme for PRS algorithms for bc centrality

6. What are the challenges? What is our contribution?
The challenges are:
1) Developing a stopping condition that
can be checked fast
guarantees that the output is a (ε, δ)-approximation
can be satisfied at small sample sizes

2)Devising a method to choose the next sample size
Our contribution: ABRA, the first algorithm that

uses PRS to obtain an (ε, δ)-approximation of bc
uses a stopping condition that only requires the solution of an
unconstrained convex minimization problem
does not need to compute any global property of the graph
computes the optimal next sample size on the fly
uses Rademacher Averages in a graph mining setting

Previous contributions using PRS gave no guarantees and used predefined
sample sizes

7. What do we really need?
Let S be the collection of pairs sampled by ABRA up to iteration i

We need a way to compute an ηS such that
Pr(sup

v∈V
|b̃(v)− b(v)| > ηS) < δ/2i

(division on the r.h.s. due to the need of Union Bound over all iterations)

If we can compute such an ηS , then the stopping condition can just be:
“is ηS ≤ ε?”

Question: How to compute ηS with the desired properties?

Issue: to compute ηS , we can only use information obtained from S

Solution: use upper bounds to Rademacher Averages!

8. What are Rademacher Averages?
The behavior of supv∈V |b̃(v)− b(v)| has been extensively studied using
VC-dimension, covering numbers, and Rademacher averages

For any node v and any pair of nodes (u,w), let

fv(u,w) =
σuw(v)
σuw

Let S = {(u1, v1), . . . , (un, v`)} be a random sample of pairs of nodes,
and let φ1, . . . , φ` be independent Rademacher r.v. (1 with prob. 1/2, -1
othw.)

Definition: The Rademacher Average on S is:

R(S) = Eφ

 sup
v∈V

1
`

∑̀
i=1

φi fv(ui ,wi) | S

The expectation is taken w.r.t. the φi only, i.e., conditionally on S

9. How are we using the Rademacher average?
Theorem (Key result from Statistical Learning Theory): Let

ηS = 2R(S) +

√
2 ln(2i3/δ)

`

Then
Pr(sup

v∈V
|b̃(v)− b(v)| ≤ ηS) < δ/2i

ηS is a sample-dependent upper bound to supv∈V |b̃(v)− b(v)|

(We actually use a more refined version of this theorem [Oneto et al., 2013])

Key question: how do we compute or bound R(S) efficiently using only
information from S?

Computing R(S) efficiently allows us to compute ηS and check our
stopping condition efficiently

10. How do we bound the Rademacher Average?
Given S, for any node v ∈ V , let qS(v) be the `-dimensional vector

qS(v) = (fv(u1,w1), . . . , fv(u`,w`)),
and let QS = {qS(v), v ∈ V} (QS is a set, hence |QS| ≤ n)
Theorem (Variant of Massart’s Lemma):
Let w : R+→ R+ be the function

ρ(s) =
1
s

ln
∑

q∈QS

exp(s2‖q‖2/(2`2))

Then
R(S) ≤ min

s∈R+
ρ(s)

Since ρ(s) is convex, its global minimum can be found efficiently

Question:
How to keep track of QS and the qS(v) efficiently?

Things to note:
We actually only need the bag of the norms ‖q‖ for q ∈ QS
For each v ∈ V , ‖qS(v)‖/` = b̃(v), so a PRS algorithm is already
implicitly tracking qS(v)
For each q ∈ QS there is (at least) one v such that q = qS(v).
Hence QS induces a partitioning of V
At the beginning of the algorithm, QS = {q0} with q0 = () (empty
vector)
As more samples are taken, the partitioning is refined by splitting some
of the partitions into multiple parts
When a pair of nodes is sampled, only partitions involving vertices
along the computed SPs between the sampled nodes may be split

Solution:
Keep track of the partitioning of V as the algorithm samples more and

more pairs, using a map from vertices to sets of vertices
Only requires Õ(n) space
Can be updated efficiently at each sample fast while backtracking
along the SPs

11. How do we choose the next sample size?
We can compute the next sample size on the fly, using information from S

First iteration: Use a sample of size at least 2 ln(3/δ)ε−2

Why? It is impossible that ηS ≤ ε at smaller sample sizes

Successive iterations:
multiply the sample size ` from the previous iteration by (2ηS/ε)2

Intuition:
If the upper bound mins∈R+ ρ(s) to the Rademacher average R(S) in

this iteration is also an upper bound to the Rademacher average for the next
iteration, then the stopping condition will be satisfied at the next iteration

12. Is there an upper bound to the number of samples taken by ABRA?
Theorem: Let θ be the logarithm of the size of the largest WCC in G .
Then we can obtain an (ε, δ)-approximation with a sample S of size

|S| =
1
ε2 (θ + ln(1/δ))

Intuition: θ is an upper bound to the pseudodimension (VC-dimension for
real-valued functions)

Conjecture: Let ` be the maximum
positive integer for which there
exists a set
L = {(u1, v1), . . . , (u`, v`)} of `
distinct pairs of distinct vertices
such that∑̀

i=1
σuivi ≥

(
`

b`/2c

)
then the pseudodimension is at
most `

21/25

Tightness of conjecture
The conjecture is tight up to ¸ = 4:

This graph satisfies the conjecture for ¸ = 4 and has
pseudodimension d = 4:

XX:18 M. Riondato and E. Upfal

— Assume now that wi,4 and wj,4 are on the same SP from u4 to v4 but wi,j,4 is on the
other SP from u4 to v4 (by hypothesis there are only two SPs from u4 to v4). Since what
we show in the previous point must be true for all choices of i and j, we have that all
nodes wh,4, 1 Æ h Æ 3, must be on the same SP from u4 to v4, and all nodes in the form
wi,j,4, 1 Æ i < j Æ 3 must be on the other SP from u4 to v4. Consider now these three
nodes, w1,2,4, w1,3,4, and w2,3,4 and consider their ordering along the SP from u4 to v4
that they lay on. No matter what the ordering is, there is an index h œ {1, 2, 3} such
that the SP ph must go through the extreme two nodes in the ordering but not through
the middle one. But this would contradict fact F1, so it is impossible that we have wi,4
and wj,4 on the same SP from u4 to v4 but wi,j,4 is on the other SP, for any choice of i
and j.
We showed that the nodes wi,4 and wj,4 can not be on the same SP from u4 to v4. But

this is true for any choice of the unordered pair (i, j) and there are three such choices, but
only two SPs from u4 to v4, so it is impossible to accommodate all the constraints requiring
wi,4 and wj,4 to be on di�erent SPs from u4 to v4. Hence we reach a contradiction and B
can not be shattered.

The bound in Thm. 4.7 is tight, i.e., there exists a graph for which the pseudodimension
is exactly 3 [Riondato and Kornaropoulos 2015, Lemma 4]. Moreover, as soon as we relax
the requirement in Thm. 4.7 and allow two pairs of nodes to be connected by two SPs, there
are graphs with pseudodimension 4, as shown in the following Lemma.

Lemma 4.10. There is an undirected graph G = (V,E) such that there is a set
{(ui, vi), ui, vi œ V, ui �= vi, 1 Æ i Æ 4} with |Su1,v1 | = |Su2,v2 | = 2 and |Su3,v3 | = |Su4,v4 | = 1
that is shattered.

0 1 2 3 4 5 10
11

22

21

35

20

36

27

26

252423

19

37

28

7

34

39

6

31

38

33

9

8

18

29

30

32

40

12

13

14

15

16

17

Fig. 1: Graph for Thm. 4.10

ACM Journal Name, Vol. XX, No. X, Article XX, Publication date: June 2016.

Figure: The conjecture is true for ` ≤ 4:
this graph satisfies the conjecture for
` = 4 and has pseudodimension 4

13. Experimental evaluation
We implemented ABRA in C++ as extension to NetworKit
We tested ABRA on datasets from the SNAP repository
Run on AMD Phenom II X4 955 processor and 16GB of RAM, running
FreeBSD 11

Results
In all runs, the maximum error was smaller than ε
Average error 100x smaller than ε
95th percentile error 10x smaller than ε
ABRA requires up to 4x fewer samples than state-of-the art RK
ABRA is up to 7x faster than RK, 40x faster than BA
99.7% of the running time is spent doing useful work (sampling)
0.1% spent checking the stopping condition
The automatic sample schedule outperforms fixed geometric ones

Speedup
w.r.t.

Runtime
Breakdown (%) Absolute Error (×105)

Graph ε
Runtime

(sec.) BA RK Sampling
Stop
Cond. Other

Sample
Size

Reduction
w.r.t.
RK max avg stddev

Soc-Epinions1
Directed

|V | = 75, 879
|E | = 508, 837

0.005 483.06 1.36 2.90 99.983 0.014 0.002 110,705 2.64 70.84 0.35 1.14
0.010 124.60 5.28 3.31 99.956 0.035 0.009 28,601 2.55 129.60 0.69 2.22
0.015 57.16 11.50 4.04 99.927 0.054 0.018 13,114 2.47 198.90 0.97 3.17
0.020 32.90 19.98 5.07 99.895 0.074 0.031 7,614 2.40 303.86 1.22 4.31
0.025 21.88 30.05 6.27 99.862 0.092 0.046 5,034 2.32 223.63 1.41 5.24
0.030 16.05 40.95 7.52 99.827 0.111 0.062 3,668 2.21 382.24 1.58 6.37

P2p-Gnutella31
Directed

|V | = 62, 586
|E | = 147, 892

0.005 100.06 1.78 4.27 99.949 0.041 0.010 81,507 4.07 38.43 0.58 1.60
0.010 26.05 6.85 4.13 99.861 0.103 0.036 21,315 3.90 65.76 1.15 3.13
0.015 11.91 14.98 4.03 99.772 0.154 0.074 9,975 3.70 109.10 1.63 4.51
0.020 7.11 25.09 3.87 99.688 0.191 0.121 5,840 3.55 130.33 2.15 6.12
0.025 4.84 36.85 3.62 99.607 0.220 0.174 3,905 3.40 171.93 2.52 7.43
0.030 3.41 52.38 3.66 99.495 0.262 0.243 2,810 3.28 236.36 2.86 8.70

Email-Enron
Undirected
|V | = 36, 682
|E | = 183, 831

0.010 202.43 1.18 1.10 99.984 0.013 0.003 66,882 1.09 145.51 0.48 2.46
0.015 91.36 2.63 1.09 99.970 0.024 0.006 30,236 1.07 253.06 0.71 3.62
0.020 53.50 4.48 1.05 99.955 0.035 0.010 17,676 1.03 290.30 0.93 4.83
0.025 31.99 7.50 1.11 99.932 0.052 0.016 10,589 1.10 548.22 1.21 6.48
0.030 24.06 9.97 1.03 99.918 0.061 0.021 7,923 1.02 477.32 1.38 7.34

Cit-HepPh
Undirected
|V | = 34, 546
|E | = 421, 578

0.010 215.98 2.36 2.21 99.966 0.030 0.004 32,469 2.25 129.08 1.72 3.40
0.015 98.27 5.19 2.16 99.938 0.054 0.008 14,747 2.20 226.18 2.49 5.00
0.020 58.38 8.74 2.05 99.914 0.073 0.013 8,760 2.08 246.14 3.17 6.39
0.025 37.79 13.50 2.02 99.891 0.091 0.018 5,672 2.06 289.21 3.89 7.97
0.030 27.13 18.80 1.95 99.869 0.108 0.023 4,076 1.99 359.45 4.45 9.53

Table: Runtime, speedup, breakdown of runtime, sample size, reduction, and absolute error

0 0.005 0.01 0.015 0.02 0.025 0.03
1E-06

1E-05

1E-04

1E-03

1E-02
max

avg+3stddev

avg

epsilon

a
b
s
o
lu

te
 e

rr
o
r

(a) Soc-Epinions1

0.000 0.005 0.010 0.015 0.020 0.025 0.030
1E-06

1E-05

1E-04

1E-03

1E-02 max

avg+3stddev

avg

epsilon

a
b
s
o

lu
te

 e
rr

o
r

(b) Email-Enron

0.000 0.005 0.010 0.015 0.020 0.025 0.030
1E-06

1E-05

1E-04

1E-03

1E-02
max

avg+3stddev

avg

epsilon

a
b
s
o

lu
te

 e
rr

o
r

(c) P2p-Gnutella

0.000 0.005 0.010 0.015 0.020 0.025 0.030
1E-06

1E-05

1E-04

1E-03

1E-02
max

avg+stddev

avg

epsilon

a
b
s
o

lu
te

 e
rr

o
r

(d) Cit-HepPh

Figure: Absolute error evaluation. The vertical axis has a logarithmic scale

0 0.005 0.01 0.015 0.02 0.025 0.03
0.0E+00

4.0E+04

8.0E+04

1.2E+05

1.6E+05

2.0E+05
auto

c=1.2

c=1.5

c=2

c=3

epsilon

S
a
m

p
le

 S
iz

e

(a) P2p-Gnutella

0 0.005 0.01 0.015 0.02 0.025 0.03
0E+00

1E+05

2E+05

3E+05

4E+05

5E+05

6E+05
auto

c=1.2

c=1.5

c=2

c=3

epsilon

S
a
m

p
le

 S
iz

e

(b) Email-Enron

0 0.005 0.01 0.015 0.02 0.025 0.03
0.0E+00

4.0E+04

8.0E+04

1.2E+05

1.6E+05

2.0E+05
auto

c=1.2

c=1.5

c=2

c=3

epsilon

S
a
m

p
le

 S
iz

e

(c) Soc-Epinions1

0 0.005 0.01 0.015 0.02 0.025 0.03
0.0E+00

4.0E+04

8.0E+04

1.2E+05

1.6E+05

2.0E+05
auto

c=1.2

c=1.5

c=2

c=3

epsilon

S
a

m
p

le
 S

iz
e

(d) Cit-HepPh

Figure: Final sample size for different sample schedules

14. Future work
Extend ABRA to other centrality measures
Improve bounds to Rademcher averages
Develop different sampling schemes to use all compute SPs
Use Martingales theory rather than Union Bound over iterations

15. Acknowledgements
This work was supported, in part, by NSF grant IIS-1247581 and NIH grant
R01-CA180776

16. Extended version
Available from http://bit.ly/abra-betweenness

matteo@twosigma.com
eli@cs.brown.edu
http://bit.ly/abra-betweenness

