ABRA: Approximating Betweenness Centrality through Sampling with Rademacher Averages

Matteo Riondato (Two Sigma Investments LP, matteo@twosigma.com) Eli Upfal (Department of Computer Science, Brown University, e1li@cs.brown.edu)

22" ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'16)

1. What problem are we studying?

Motivation: ldentifying the most important vertices in a graph allows us to
study properties such as network robustness, information diffusion, and
influence propagation, that give important insights on the structure and the
dynamics of the graph

Example: Find most influential CEOs, most informed journalists, most
central locations in a city, most linked websites, etc.

Let G = (V, E) be a graph, with |V| = n nodes and |E| = m edges

To find the most important, i.e., central, vertices in G we need a measure
of importance, i.e., a centrality measure that assigns a score to each vertex,
based on some of concept of importance (using degree, distance, .. .)

Betweenness centrality uses information on Shortest Paths (SP) distance to
assign the score

For each pair of different nodes (u, w) € V X V let:
@ oyw: no. of Shortest Paths (SP) from u to w
@ ouw(Vv): no. of SPs from u to w that go through a node v # u, w

Definition: Betweenness Centrality (BC) of v € V:

1 ouw(Vv)
n(n—1) Z

(0}

b(v) =

Task: Compute the betweenness centrality score b(v) for all nodes v € V

2. How can we compute all the BC's exactly?
Naive Algorithm:

All-Pairs SP + Aggregation (sum for each node)
Takes @(n3) due to the aggregation

Brandes' Algorithm (BA, [Brandes, 2001]):
For each node v € V:

1) Run Single Source SP from v

2) Backtrack along SP DAG,

appropriately incrementing BC of nodes along the SPs.
Takes O(n?*m) (unweighted G) or O(n?m + n? log n) (weighted G)

[ssue: Exact algorithms do not scale with |V/|

3. How can we speed up BC computation?
Intuition: Trade-off accuracy for speed:

Only perform a few SPs computations between pairs of nodes (u, w)
sampled at random

Computed BC values are approximate but fast to compute
Approximation is OK: centrality computation is a exploratory task

Key question:
How many pairs to sample to get an approximation of the desired quality?

Our contribution:

ABRA: a fast approximation algorithm for BC that uses Progressive
Random Sampling and Rademacher Averages to obtain probabilistic
guarantees on the accuracy of the output

4. How do we define an approximation of the BC's?

Let B = {b(v),v € V} (Bisabag: |B| =n), and €,6 € (0,1)
Definition: (e, d)-approximation to B:

Aset B = {b(v),v € V} s.t.

Pr(3v € V : |b(v) — b(v)| >¢) <

ABRA returns an (&, §)-approximation to B
It uses Progressive Random Sampling to decide how much to sample

5. What is Progressive Random Sampling (PRS)?

How much shall we sample in order to obtain an (&, d)-approximation?

State of the art (RK [R. and Kornaropoulos, 2015]):
@ sample single SPs at each step: lots of wasted work
@ use fixed sample size for worst-case graphs
This work (ABRA):
@ samples pairs of nodes, and uses all SPs among them
@ PRS: let's start sampling: the data will tell us when to stop

Progressive Random Sampling is an iterative sampling scheme

Outline of a PRS algorithm for BC centrality

o Initialize c(v) =0, forall v € V
@ Repeat until the stopping condition is satisfied:

@ sample a pair (u, w) from V X V uniformly at random

©Q runs — t SP from u to w (e.g., with BFS, Dijkstra, A")

© If wis reached, backtrack from w to u, incrementing c(v) by oyw(v) /o, for
nodes v along the SPs

@ Let £ be the number of sampled pairs
@ Output the collection {b(v) = c(v)/€é,v € V}
In reality, multiple samples are collected at each iteration, according to a

sample schedule (a sequence of sample sizes), and the stopping condition is
only checked once per iteration

ABRA implements the above scheme for PRS algorithms for BC centrality

6. What are the challenges? What is our contribution?
The challenges are:
1) Developing a stopping condition that

@ can be checked fast

@ guarantees that the output is a (&, §)-approximation
@ can be satisfied at small sample sizes

2)Devising a method to choose the next sample size

Our contribution: ABRA, the first algorithm that
@ uses PRS to obtain an (e, §)-approximation of BC

@ uses a stopping condition that only requires the solution of an
unconstrained convex minimization problem

@ does not need to compute any global property of the graph
@ computes the optimal next sample size on the fly
@ uses Rademacher Averages in a graph mining setting

Previous contributions using PRS gave no guarantees and used predefined
sample sizes

7. What do we really need?

Let S be the collection of pairs sampled by ABRA up to iteration i

We need a way to compute an 1)g such that

Pr(sup [B(v) — b(v)| > ns) < 8/2
veV

(division on the r.h.s. due to the need of Union Bound over all iterations)

If we can compute such an 1n3g, then the stopping condition can just be:
“is 7]8 S E?’,

Question: How to compute 1g with the desired properties?
Issue: to compute 17g, we can only use information obtained from &

Solution: use upper bounds to Rademacher Averages!

8. What are Rademacher Averages?

The behavior of sup, vy Ib(v) — b(v)| has been extensively studied using
VC-dimension, covering numbers, and Rademacher averages

For any node v and any pair of nodes (u, w), let

ouw(Vv)

fu(u, w) =

O uw
Llet S = {(u1,vq1),...,(un, vpg)} be a random sample of pairs of nodes,
and let @1, ..., @y be independent Rademacher r.v. (1 with prob. 1/2, -1

othw.)

Definition: The Rademacher Average on § is:

¢
1
R(S) =Eg | sup — > gifu(uj,wi)| S
—1

_VEV j=

The expectation is taken w.r.t. the @; only, i.e., conditionally on &

9. How are we using the Rademacher average?
Theorem (Key result from Statistical Learning Theory): Let

21n(273/9)

ns = 2R(S) + .

Then

Pr(sup |b(v) — b(v)| < ns) < §/2'
veV

7s is a sample-dependent upper bound to sup,cy Ib(v) — b(v)

(We actually use a more refined version of this theorem [Oneto et al., 2013])

Key question: how do we compute or bound R(S) efficiently using only
information from &7

Computing R(S) efficiently allows us to compute g and check our
stopping condition efficiently

10. How do we bound the Rademacher Average?
Given &, for any node v € V, let qg(v) be the £-dimensional vector

as(v) = (f(ug, wi), . . ., fulug, we)),
and let Qs = {qs(v),v € V} (Qgs is a set, hence |Qg| < n)

Theorem (Variant of Massart’s Lemma):
Let w : RT — RT be the function

p(s) = _In 3 exp(s?al2/(26))
q€l@s
Then

R(S) < SrgliR{rL p(s)

Since p(s) is convex, its global minimum can be found efficiently

Question:
How to keep track of Qg and the gg(v) efficiently?

Things to note:

@ We actually only need the bag of the norms ||q|| for g € Qs

o For each v € V, ||gs(v)||/€ = b(v), so a PRS algorithm is already
implicitly tracking qs(v)

@ For each g € Qg there is (at least) one v such that g = gg(v).
Hence Qg induces a partitioning of V

@ At the beginning of the algorithm, Qs = {qp} with gg = () (empty
vector)

@ As more samples are taken, the partitioning is refined by splitting some
of the partitions into multiple parts

@ When a pair of nodes is sampled, only partitions involving vertices
along the computed SPs between the sampled nodes may be split

Solution:
Keep track of the partitioning of V as the algorithm samples more and
more pairs, using a map from vertices to sets of vertices
@ Only requires 5(n) space
@ Can be updated efficiently at each sample fast while backtracking
along the SPs

11. How do we choose the next sample size?

We can compute the next sample size on the fly, using information from &

First iteration: Use a sample of size at least 2 In(3/8)e 2
Why? It is impossible that ng < € at smaller sample sizes

Successive iterations:
multiply the sample size £ from the previous iteration by (2ng/e)?

Intuition:

If the upper bound min 4+ p(s) to the Rademacher average R(S) in
this iteration is also an upper bound to the Rademacher average for the next
iteration, then the stopping condition will be satisfied at the next iteration

12. Is there an upper bound to the number of samples taken by ABRA?
Theorem: Let @ be the logarithm of the size of the largest WCC in G.
Then we can obtain an (&, §)-approximation with a sample S of size

1
S| =) (6 +In(1/96))
Intuition: @ is an upper bound to the pseudodimension (VC-dimension for

real-valued functions)

23 24 25 28 39 33
® ® ® ® ® ® @ 40

Conjecture: Let £ be the maximum
positive integer for which there
exists a set

L= {(ulv Vl)v R (Ug, Vﬁ)} of £
distinct pairs of distinct vertices
such that

14
2 T 2 (1e/2)

then the pseudodimension is at
most £

@ 32

Ij: 30
29 17
19 31
® 15
18
7 ® 14 @16
8 @13
} 6 } 9 @12
® ® 11
3 4 5 0

1
Figure: The conjecture is true for £ < 4:
this graph satisfies the conjecture for
£ = 4 and has pseudodimension 4

22

@ ® @
0 1 2

13. Experimental evaluation
@ We implemented ABRA in C++4 as extension to NetworKit

@ We tested ABRA on datasets from the SNAP repository

@ Run on AMD Phenom |l X4 955 processor and 16GB of RAM, running
FreeBSD 11

Results
@ In all runs, the maximum error was smaller than
@ Average error 100x smaller than &
o 95t percentile error 10x smaller than e
@ ABRA requires up to 4x fewer samples than state-of-the art RK
@ ABRA is up to 7x faster than RK, 40x faster than BA
@ 99.7% of the running time is spent doing useful work (sampling)
@ 0.1% spent checking the stopping condition
@ The automatic sample schedule outperforms fixed geometric ones

Speedup Runtime

w.r.t. Breakdown (%) Absolute Error (x10°)
. Reduction
Runtime Stop Sample w.r.t.
Graph € (sec.) BA RK Sampling Cond. Other Size RK max avg stddev

0.005 483.06 136 290 99.983 0.014 0.002 110,705 2.64 7084 035 1.14

Soc-Epinionsl 0.010 12460 528 3.31 99.956 0035 0.009 28,601 255 12060 0.69 2.22
Directed 0.015 57.16 1150 4.04 99.927 0.054 0.018 13,114 247 198.90 097 3.17
V| =75,879 0020 3290 19.98 507 99.895 0.074 0.031 7,614 240 303.86 122 431
|E| = 508,837 0.025 21.88 30.05 6.27 99.862 0.092 0.046 5,034 2.32 223.63 141 524
0.030 16.05 4095 7.52 99.827 0.111 0.062 3,668 221 38224 158 6.37

0.005 100.06 1.78 4.27 99.949 0.041 0.010 81,507 4.07 38.43 058 1.60

P2p-Gnutella3l 0.010 26.05 6.85 4.13 99.861 0.103 0.036 21,315 3.90 65.76 1.15 3.13
Directed 0.015 1191 1498 403 99.772 0.154 0.074 9,975 3.70 109.10 1.63 4.51
|V| =62,586 0.020 7.11 25.09 3.87 99.688 0.191 0.121 5,840 3.55 130.33 2.15 6.12
|E| = 147,892 0.025 484 36.85 3.62 99.607 0220 0.174 3,905 3.40 171.93 252 7.43
0.030 3.41 5238 3.66 99.495 0.262 0243 2,810 3.28 236.36 2.86 8.70

ErilEmro, 0010 20243 118 110 99.984 0013 0003 66882 109 14551 0.48 246
ey’ 0015 9136 263 109 99.970 0024 0006 30236 107 25306 071 3.62
V| = 36,682 0020 5350 448 105 99955 0035 0010 17676 103 29030 093 4.83
E| = 183,831 0025 3199 7.50 111 99.932 0052 0016 10589 110 54822 121 6.48

0.030 2406 997 1.03 99.918 0.061 0.021 7,923 1.02 47732 138 7.34

0.010 21598 236 221 99.966 0.030 0.004 32,469 2.25 129.08 1.72 3.40
0.015 98.27 519 216 99.938 0.054 0.008 14,747 2.20 226.18 2.49 5.00

Cit-HepPh

|Vlf”i'r§jfe§’46 0.020 5838 874 205 99.914 0073 0013 8760 2.08 246.14 3.17 6.39

|E| = 421,578 0.025 37.79 1350 2.02 99.891 0.091 0.018 5,672 2.06 289.21 3.89 7.97
’ 0.030 27.13 18.80 1.95 99.869 0.108 0.023 4,076 1.99 359.45 4.45 9.53

Table: Runtime, speedup, breakdown of runtime, sample size, reduction, and absolute error

1E-02 1 g 1E-02 g max

avg+3stddev avg+3stddev
1E-03 =o—avg 1E-03 =o—avg

1E-04

1E-05 / o o * —* 1E-05 //o/'——‘

1E-06 1E-06
0 0.005 0.01 0.015 0.02 0.025 0.03 0.000 0.005 0.010 0.015 0.020 0.025 0.030
epsilon epsilon

(b) Email-Enron

—
M
o
N

absolute error
absolute error

(a) Soc-Epinionsl

1E-02 1E-02
-~ max -~ max
avg+3stddev avg+stddev —y—a—1

1E-03 - an./// 1E-03 —— avg /
5 5
o 1E-04 o 1E-04
S — | 9 *
g ¢) 3 /
® 1E-05 //0/ © 1E-05

1E-06 1E-06

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.000 0.005 0.010 0.015 0.020 0.025 0.030

epsilon

(d) Cit-HepPh

epsilon

(c) P2p-Gnutella

Figure: Absolute error evaluation. The vertical axis has a logarithmic scale

2.0E+05 6E-+05
-~ auto
1.6E+05 5E+05 ——c=1.2
w c=1.5
N 4E+05 =
? 1.2E+05 o ——c=2
o N —-—c=3
5 ® 3E+05
£ 8.0E+04 a
n %2E+05
on
4.0E+04 1E+05
0.0E+00 0E+00 —
0 0.005 0.01 0.015 0.02 0.025 0.03 0 0.005 001 0015 002 0025 003
epsilon epsilon
(a) P2p-Gnutella (b) Email-Enron
2.0E+05 2.0E+05
1.6E+05 1.6E+05
Q o
& 1.2E+05 N 1.2E+05
o
<@ [0}
s ey
E 8.0E+04 £ 8.0E+04
2 A
4.0E+04 4.0E+04
0.0E+00 0.0E+00
0 0.005 001 0015 002 0025 0.03 0 0.005 0.01 0015 002 0.025 003

epsilon epsilon

(c) Soc-Epinionsl (d) Cit-HepPh

Figure: Final sample size for different sample schedules

14. Future work

@ Extend ABRA to other centrality measures

@ Improve bounds to Rademcher averages

@ Develop different sampling schemes to use all compute SPs

@ Use Martingales theory rather than Union Bound over iterations

15. Acknowledgements
This work was supported, in part, by NSF grant [1S-1247581 and NIH grant

R0O1-CA180776
16. Extended version

Available from http://bit.ly/abra-betweenness

matteo@twosigma.com
eli@cs.brown.edu
http://bit.ly/abra-betweenness

