

SCALABLE BETWEENNESS CENTRALITY MAXIMIZATION VIA SAMPLING

MOTIVATION

The betweenness centrality of a node u is defined as

$$B(u) = \sum_{s,t} \frac{\sigma_{s,t}(u)}{\sigma_{s,t}},$$

where $\sigma_{s,t}$ is the number of s-t shortest paths, and $\sigma_{s,t}(u)$ is the number of s-t shortest paths that have u as their internal node.

• Community detection: Betweenness centrality is frequently used to detect communities in large scale networks [3].

• Navigation applications: It is also used as a successful heuristic for selecting landmarks in state-of-the-art shortest path applications [1]

• Attacking graph connectivity: Real-world networks are robust to random failures but fragile with respect to targeted attacks. Betweenness centrality is used as a good heuristic to destroy connectivity

(a)We explain empirical evidence which supports this strong assumption using Random Apollonian Networks that provably generate scale-free, small-world graphs with high probability [2]. Also, boundedtree width networks including Barabasi-Albert random graphs satisfy this assumption. Contribution 2 We design HEDGE- $a (1-1/e-\epsilon)$ -

Ahmad Mahmoody ahmad@cs.brown.edu

MAIN CONTRIBUTIONS

For $S \subseteq V$, we define the betweenness centrality of S as

$$B(S) = \sum_{s,t \in V} \frac{\sigma_{s,t}(S)}{\sigma_{s,t}}$$

where $\sigma_{s,t}(S)$ is the number of s-t shortest paths that have an internal node in S.

Contribution 1 Prior work on BWC estimation strongly relies on the assumption that $OPT_k = \Theta(n^2)$ for a constant integer k [4]. We show this assumption is not true in general.

approximation algorithm – that uses smaller sized samples compared to state-of-the-art [4].

Algorithm 1: HEDGE

Input: A hyper-edge sampler \mathcal{A} for BWC, number of hyper-edges q, and the size of the output set k. **Output:** A subset of nodes, *S* of size k. $\mathcal{H} \leftarrow \emptyset;$ for $i \in [q]$ do $h \sim \mathcal{A}$ (sample a random hyper-edge); $\mathcal{H} \leftarrow \mathcal{H} \cup \{\hat{h}\};$ $S \leftarrow \emptyset$; while |S| < k do $u \leftarrow \arg \max_{v \in V} \deg_{\mathcal{H}}(\{v\});$ $S \leftarrow S \cup \{u\};$ for $h \in \mathcal{H}$ such that $u \in h$ do $\mathcal{H} \leftarrow \mathcal{H} \setminus \{h\};$ return S;

Contribution 3 We provide a general analytical framework based on Chernoff bound and submodular optimization, and show that it can be applied to any other centrality measure if it (i) is monotonesubmodular, and (ii) admits a hyper-edge sampler

GRAPI

GRAPHS CA-GrQc

CA-Hep]

ego-Face

Our proposed method outperforms the state-of-theart method due to Yoshida [4]

Our proposed algorithm can be used to scale heuristic uses of BWC for influence maximization.

The size of the largest connected component, as we remove the first 1000 nodes in the order induced by centralities.

Charalampos E. Tsourakakis babis@seas.harvard.edu

Eli Upfal eli@cs.brown.edu

Experimental Results

				Algorithms		
GRAPHS	#nodes	#edges	k	EXHAUST	HEDGE	speedup
			10	0.242	0.241	2.616
ca-GrQd	5242	14496	50	0.713	0.699	2.516
			100	0.974	0.951	2.217
			10	0.013	0.011	6.773
p2p-Gnutella08	6301	20777	50	0.036	0.035	6.478
			100	0.053	0.051	6.117
			10	0.165	0.164	4.96
ca-HepTh	9877	25998	50	0.498	0.497	4.729
			100	0.747	0.745	4.473

HEDGE vs. EXHAUST (baseline method): centralities and speedups.

		Bet	tw. Centra	lity	# of Samples		es
[S	k	Y-ALG	$HEDGE_{=}$	HEDGE	Y-ALG	$HEDGE_{=}$	HEDGE
	10	0.208	0.214	0.215			8565
)c	50	0.484	0.483	0.49	52	5278	
	100	0.569	0.568	0.577			85643
	10	0.151	0.151	0.154			9198
Th 50	50	0.403	0.4	0.409	5658		45989
	100	0.534	0.533	0.547			91978
	10	0.924	0.932	0.933			8304
ebook	50	0.959	0.957	0.959	5	121	41519
	100	0.962	0.96	0.964			83038
	10	0.329	0.335	0.335			10511
nron	50	0.644	0.646	0.65	64	445	52552
	100	0.754	0.756	0.762]		105104

		METHODS				
ΉS	k	IM	betw.	COV.	к-path	tri.
	10	19.12	13.67	14.93	14.10	18.48
rQc	50	76.65	67.28	67.44	65.06	69.30
	100	141.33	126.76	126.66	124.51	124.06
	10	17.33	15.61	15.58	14.63	12.98
epTh	50	77.88	70.53	69.95	67.80	63.95
-	100	147.75	133.45	133.24	130.41	127.52
	10	19.61	13.05	13.71	10.39	18.06
nutella08	50	83.64	60.58	61.73	51.57	74.19
	100	148.86	118.27	118.76	103.58	132.04
	10	461.84	458.70	450.34	455.25	451.53
Enron	50	719.86	703.08	695.81	699.74	681.05
	100	887.63	863.66	858.39	699.74 865.76	830.15
	10	184.40	162.64	160.35	163.16	145.19
ightkite	50	402.85	372.64	360.64	366.28	330.45
	100	563.13	521.18	508.59	512.77	445.11
	10	343.89	81.57	111.47	14.43	311.74
inion1	50	846.18	300.88	282.88	72.90	778.56
	100	1161.45	463.04	457.29	133.20	1062.99

- I. Abraham, D. Delling, A. Goldberg, R. Werneck. Hierarchical hub labelings for shortest paths. ESA 2012
- A. Frieze and C. E. Tsourakakis. Some properties of random apollonian networks. Internet Mathematics, 10(1-2):162–187, 2014.
- M. Girvan and M. E. Newman. Community structure in social and biological networks. PNAS, 99(12):7821-7826, 2002.
- [4] Y. Yoshida. Almost linear-time algorithms for adaptive betweenness centrality using hypergraph sketches. KDD, 2014.