Motivation

The betweenness centrality of a node \(u \) is defined as

\[
B(u) = \sum_{s,t} \frac{\sigma_{s,t}(u)}{\sigma_{s,t}},
\]

where \(\sigma_{s,t} \) is the number of \(s-t \) shortest paths, and \(\sigma_{s,t}(u) \) is the number of \(s-t \) shortest paths that have \(u \) as their internal node.

- **Community detection**: Betweenness centrality is frequently used to detect communities in large scale networks [3].

- **Navigation applications**: It is also used as a successful heuristic for selecting landmarks in state-of-the-art shortest path applications [1].

- **Attacking graph connectivity**: Real-world networks are robust to random failures but fragile with respect to targeted attacks. Betweenness centrality is used as a good heuristic to destroy connectivity.

Main contributions

For \(S \subseteq V \), we define the betweenness centrality of \(S \) as

\[
B(S) = \sum_{s,t} \frac{\sigma_{s,t}(S)}{\sigma_{s,t}},
\]

where \(\sigma_{s,t}(S) \) is the number of \(s-t \) shortest paths that have an internal node in \(S \).

Contribution 1

Prior work on BWC estimation strongly relies on the assumption that \(\text{OPT}_k = \Theta(n^2) \) for a constant integer \(k \) [4]. We show this assumption is not true in general.

We explain empirical evidence which supports this strong assumption using Random Apollonian Networks that provably generate scale-free, small-world graphs with high probability [2]. Also, bounded-tree width networks including Barabasi-Albert random graphs satisfy this assumption.

Contribution 2

We design \textsc{Hedge} – a \((1 - 1/e - \epsilon)\)-approximation algorithm – that uses smaller sized samples compared to state-of-the-art [4].

Our proposed method outperforms the state-of-the-art method due to Yoshida [4].

Contribution 3

We provide a general analytical framework based on Chernoff bound and submodular optimization, and show that it can be applied to any other centrality measure if it is monotone-submodular, and (ii) admits a hyper-edge sampler.

The size of the largest connected component, as we remove the first 1000 nodes in the order induced by centralities.

Experimental Results

HEDGE vs. EXHAUST (baseline method): centralities and speedups.

Experimental results

- **Time evolving networks**:
 - (a) AS: \(k = 1 \)
 - (b) AS: \(k = 50 \)
 - (c) DBLP: \(k = 1 \)
 - (d) DBLP: \(k = 50 \)
 - (e) KG: \(k = 1 \)
 - (f) KG: \(k = 50 \)

Largest betweenness centrality score and number of nodes, edges and average degree versus time on the (i) Autonomous systems (a),(b) (ii) DBLP dataset (c),(d) and (iii) stochastic Kronecker graphs (e),(f).

References

