TRIÈST: Counting Local and Global Triangles in Fully-Dynamic Streams with Fixed Memory Size

MOTIVATION

Social networks are constantly evolving

- 1500 Facebook friend requests / sec.
- 2000 FB messages/sec.
- 1000 new tweets per second on Twitter

Properties of real graphs are **inherently** volatile and we need efficient algorithms that keep track of fast changingthere is no end of the properties over massive graphs with billions of edges.

Key implications:

- Re-running the algorithm from scratch at every update is infeasible;
- Approximations provide sufficient information;
- No knowledge of the size of the stream...
- stream, so no postprocessing at the end of the stream is possible.

TRIÈST FOR INSERTION ONLY STREAMS

TRIÈST-BASE

Using Reservoir Sampling TRIÈST-BASE maintains a sample of size *M* of the edges in the stream:

- 1.For $t \leq M$: add the *t*-th edge to the sample S;
- 2.For t > M, with prob. M/t add the t-th edge to S and discard an edge selected uniformly at random from S;
- S is a uniform sample of fixed size = M;
- Each time the sample S is updated, we update the global counter T (local T(u)) of the number of triangles in the sample subgraph;
- In order to count a triangle, all its edges need to be in the sample subgraph. The probability of this event is:

$$p_{\Delta} = \binom{M}{3} / \binom{t}{3}$$
$$\tau = T/p_{\Delta}$$

• Global estimator: • Local estimators: $\tau(u) = T(u)/p_{\Delta}$

This work

EXPERIMENTAL SETTING

Graph	1	7	E		$ \Delta $
Patent (Co-Aut.)	1,162	2,227	$3,\!660$,945	3.53×10^6
Patent (Cit.)	2,745	5,762	$13,\!965$	5,410	6.91×10^6
LastFm	681	,387	$43,\!518$	3,693	1.13×10^9
Yahoo! Answers	2,432	2,573	$1.21 \times$	10^{9}	7.86×10^{10}
Twitter	41,65	2,230	$1.47 \times$	10^{9}	3.46×10^{10}
Work	Single pass	Fixed space	Local counts	Global counts	• •
[Becchetti et al. 2010] [Kolountzakis et al. 2012] [Pavan et al. 2013] [Jha et al. 2015] [Ahmed et al. 2014] [Lim and Kang 2015]	× × √ √	✓ /X [†] ✓ ✓ ✓ ×	✓ × × × ×	× √ √ √ ×	X X X X X

None of the previous works has all the following properties: Single pass, fullydynamic, fixed memory space, small query time, unbiased estimate of global and local triangles.

 $\checkmark \checkmark \checkmark \checkmark \checkmark$

Triang 8×10^{10} 7×10^{10} 6×10^{10} 6×10^{10} 5×10^{10} 2×10^{10} 2×10^{10} 1×10^{10} 0 0 5×10^{10} 2×10^{10} 1×10^{10} 0 5×10^{10} 7×10^{10} 2×10^{10} 1×10^{10} 0 5×10^{10} 7×10^{10} 5×10^{10} 1×10^{10} 0 5×10^{10} 7×10^{10} 1×10^{10} 0 5×10^{10} 7×10^{10} 1×10^{10} 0 5×10^{10} 5×10^{10} 1×10^{10} 0 5×10^{10} 5×10^{10} 1×10^{10} 0 5×10^{10} 5×10^{10} 0 5×10^{10} 5×10^{10} 0 5×10^{10} 0 5×10^{10} 0 5×10^{10} 0 5×10^{10} 0 5×10^{10} 0 5×10^{10} 0 0 5×10^{10} 0 0 5×10^{10} 0 0 5×10^{10} 0 0 5×10^{10} 0 0 0 5×10^{10} 0 0 5×10^{10} 0 0 0 0 0 0 0 0	yle
Highly concentrat free free free free free free free free	

Lorenzo De Stefani (Brown University), Alessandro Epasto (Google Research NY), Matteo Riondato (Two Sigma Investments, LP), Eli Upfal (Brown University)

lorenzo@cs.brown.edu, aepasto@google.com, matteo@twosigma.com, eli@cs.brown.edu

available memory space than fixed sampling probability approaches, through graph evolution

Our algorithm is very fast \approx 100 μs per update

TRIÈST-FD archives high accuracy and scalability even with limited sample space and high number of deletions

SAMPLING STRATEGY

- TRIÈST builds on reservoir sampling to utilize all the available memory of fixed size *M*;
- At any time, the $K \leq M$ edges in memory are chosen uniformly at random from all subsets of K edges in the graph seen so far;
- The edges maintained in memory constitute a sample subgraph of the entire network;
- TRIÈST keeps counters T and T(u) for the number of global local triangles in the sample subgraph;
- The counters are used to obtain unbiased estimators for the number of global Δ and local $\Delta(v)$ triangles in the entire network.

ANALYTICAL CHALLENGES

The analysis is complicated because in a fixed size sample, the inclusion of edges in the sample are not independent events:

• Proving analytical bounds for the sample variance of our algorithms is significantly harder compared to algorithms that use fixed probability sampling and have variable sample size.

Several benefits:

- full utilization of available fixed memory;
- reduced variance through the graph evolution;
- no need to fix a priori sampling probability;
- improved performance in experimental setting

Estimation errors for sliding window deletions

	Avg. Global	Avg. Local	
M	MAPE	Pearson	ε Err.
00000	$\begin{array}{c} 0.040 \\ 0.006 \end{array}$	$0.620 \\ 0.950$	$\begin{array}{c} 0.53 \\ 0.33 \end{array}$
00000 00000	$0.060 \\ 0.006$	$0.278 \\ 0.790$	$\begin{array}{c} 0.50 \\ 0.21 \end{array}$
00000 00000	$\begin{array}{c} 0.280\\ 0.026\end{array}$	$\begin{array}{c} 0.068 \\ 0.510 \end{array}$	$\begin{array}{c} 0.06 \\ 0.04 \end{array}$

Estimation errors for massive deletions

	Avg. Global	Avg. Local	
M	MAPE	Pearson	ε Err.
0000	$\begin{array}{c} 0.005 \\ 0.002 \end{array}$	$0.980 \\ 0.999$	$\begin{array}{c} 0.020\\ 0.001 \end{array}$
0000	$\begin{array}{c} 0.010\\ 0.001\end{array}$	$0.660 \\ 0.990$	$\begin{array}{c} 0.300 \\ 0.006 \end{array}$
0000	$\begin{array}{c} 0.170 \\ 0.040 \end{array}$	$0.090 \\ 0.600$	$\begin{array}{c} 0.160 \\ 0.130 \end{array}$

REFERENCES

- 1.L. De Stefani, A. Epasto, M. Riondato, and E. Upfal. TRIÈST: Counting local and global triangles. n fully-dynamic streams with fixed memory size, KDD '16. ACM, 2016
- 2. L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient algorithms for large-scale local triangle counting. ACM TKDD, 4(3):13:1-13:28, 2010. 3. R. Gemulla, W. Lehner, and P. J. Haas. Maintaining bounded-size sample synopses of evolving datasets. The VLDB Journal, 17(2):173-
- 201.2008 4.M. Jha, C. Seshadhri, and A. Pinar. A space-efficient streaming algorithm for estimating transitivity and triangle counts using the birthday paradox. ACM TKDD, 9(3):15:1-15:21, 2015.
- 5. M. N. Kolountzakis, G. L. Miller, R. Peng, and C. E. Tsourakakis. Efficient triangle counting in large graphs via degree-based vertex
- partitioning. Internet Mathematics, 8(1-2):161-185, 2012. 6.Y. Lim and U. Kang. MASCOT: Memory-efficient and accurate sampling for counting local triangles in graph streams., KDD '15, pages 685–694. ACM. 2015.
- 7. A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu. Counting and sampling triangles from a graph stream. Proceedings of the VLDB Endowment, 6(14):1870–1881, 2013. 8. J. S. Vitter. Random sampling with a reservoir. ACM Transactions on
- Mathematical Software, 11(1):37–57, 1985

Full paper and software available at: http://bigdata.cs.brown.edu/triangles.html

