Efficient discovery of association rules and frequent itemsets through sampling with tight performance guarantees

Matteo Riondato and Eli Upfal Department of Computer Science – Brown University matteo@cs.brown.edu

I. Settings and definitions

II. Motivation, Goals and Constraints

Exact algorithms exist for the mining problems (Apriori, FPGrowth,...)

They have **drawbacks**:

- Need to scan dataset D multiple times
- Running time depends on size of D (number of transactions)
- Too expensive for very large datasets: disk access is slow

Key Observation: Data mining is exploratory in nature Fast and good enough results are preferred to slow but exact

 $f_D(X)$ = fraction of transactions of D containing X

Association Rule W: $X \rightarrow Y$

"transactions containing X are likely to contain Y"

frequency of W: $f_D(W) = f_D(X \cup Y)$ confidence of W: $c_D(W) = \frac{f_D(X \cup Y)}{f_D(X)}$

Mining Problems: Find the sets

- $FI(D, \theta)$: Frequent Itemsets with threshold
- All itemsets X with frequency $f_D(X) \ge \theta$, with their frequencies in D
- TOPK(D, K): Top-K Frequent Itemsets
- All itemsets at least as frequent as the Kth most frequent
- $AR(D, \theta, \gamma)$: Association Rules
- All association rules W with $f_D(W) \ge \theta$ and $c_D(W) \ge \gamma$ Our work can be applied to all three problems

Goal: Speed up mining using a random sample of D while guaranteeing good results

Sample = collection of transactions drawn uniformly at random from D

Constraints

- Sample should fit in main memory: no disk access \rightarrow fast computation
- Size of sample must not depend on size of D
- Give probabilistic guarantees on quality of the results.
- Make no assumptions on the frequencies distribution.

III. Our solution

(focus on $FI(D, \theta)$). Everything can be extended to the other problems)

Desired properties of the output: a set R of pairs (X, f_X) such that

- All itemsets with frequency $f_D(X) \ge \theta$ must be in R.
- No itemset with frequency $f_D(X) < \theta \varepsilon$ can be in R.
- All itemsets X in R must have an associated f_X close (within $\epsilon/2$) to their frequency in D: $|f_X - f_D(X)| \le \varepsilon/2$

IV. VC-Dimension

Tool from Statistical Learning Theory

- Describes "richness" of family of indicator functions
- Gives **bound to sample size** needed to approximately learn a function

Definition

heta - arepsilonMust not be in R May be in R Frequency Must be in R **R**= ε -approximation to $FI(D, \theta)$

Variant with relative guarantees ($(1 - \varepsilon)\theta$, ...) in the paper

Key Ingredient: Use results on **VC-Dimension** to compute |S| such that for a sample S of size |S|, we have:

 $\Pr(\exists \text{ itemset } X : |f_D(X) - f_S(X)| > \frac{\varepsilon}{2}) < \delta$

Algorithm

input: $D, \theta, \varepsilon, \delta$

1) Compute |S| and create S using random sampling with replacement 2) Output $FI(S, \theta - \varepsilon/2)$ using exact algorithm

Theorem: Correctness

The set $FI(S, \theta - \varepsilon/2)$ is an ε -approximation to $FI(D, \theta)$ with probability at least $1 - \delta$

Given a set of points P and a family $F \subseteq 2^P$ (ranges), the VC-Dimension of the range space (P,F) is the cardinality of the **largest** $A \subseteq P$ such that **Example:** $P = \mathbb{R}^2$, F=halfspaces

$$\{r \cap A : r \in F\} = 2^A$$

 $|S| \ge \frac{1}{c^2} \left(d + \log \frac{1}{\delta} \right)$

If d does not depend on |D|, then |S| is also independent from |D|!

Theorem: Bound to sample size

Given $0 < \varepsilon, \delta < 1$, if (P,F) has VC-Dimension $\leq d$, with probability $> 1 - \delta$, a random sample $S \subseteq P$ of size

is such that

|D|

Such a sample is called an ε -approximation to (P,F)

V. The d-index of the dataset

In our case:

• P = D

VI. Experiments

We evaluated our method using datasets from FIMI repository

• For any itemset X, let $T_D(X)$ = set of transactions of D containing X • $F_D = \{T_D(X) \forall \text{ itemset } X\}$ If $S \subseteq D$ is an ε /2-approximation for (D, F_D) :

$$\begin{aligned} |T_D(X)| \\ |D| \\ |S| \\ |S| \\ |f_D(X) - f_S(X)| \\ \leq \varepsilon/2, \forall \text{ itemset } X \end{aligned}$$

i.e.
$$|f_D(X) - f_S(X)| \\ \leq \varepsilon/2, \forall \text{ itemset } X \end{aligned}$$

We need a bound to the VC-Dimension of (D, F_D)

Definition

The d-index d of a dataset D is the maximum integer such that D contains at least d transactions of length at least d - d is independent from |D|

Example: this dataset has d-index d=3

The d-index can be computed with a single scan of the dataset **Theorem:** d is an upper bound to the VC-Dimension of (D, F_D) **Theorem:** there are datasets with VC-Dimension exactly d i.e., the **bound is strict**

Results

- Sample always fits in main memory (hundreds of runs)
- $FI(S, \theta \varepsilon/2)$ always an -approximation $toFI(D, \theta)$
- Frequency accuracy even better than guaranteed
- Mining time significantly improved

