Efficient discovery of association rules and frequent itemsets through sampling

Transactional Dataset D
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Figure from Tan et al. - Introduction to Data Mining
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Frequency of an itemset X in D:
fp (X )= fraction of transactions of D containing X

Association Rule W: X—>Y

* “transactions containing X are likely to contain Y~

« frequency of W: f/p(W) = fp(X UY) confidence of W:cp(W) = [o(X UY)

fp(X)

Mining Problems: Find the sets
e FI(D, @) : Frequent Itemsets with threshold
* All itemsets X with frequency fp(X) > 0, with their frequencies in D
« TOPK(D, K): Top-K Frequent Itemsets
* All itemsets at least as frequent as the K™ most frequent
« AR(D,0,~): Association Rules
» All association rules W withfp (W) > 0 and cp(W) > v
Our work can be applied to all three problems

lll. Our solution
(focus on FI(D, 6). Everything can be extended to the other problems)

Desired properties of the output: a set R of pairs (X, fx)such that
» All itemsets with frequency f(X) > ¢ must be in R.
« No itemset with frequency fp(X) < 6 — ¢ can bein R.
« Allitemsets X in R must have an associated fx close (within €/2) to
their frequency in D: |/x — fp(X)| < g/2
0 — ¢ v 1

0
Frequency -y
Must not be In R May be in R Must be In R

R=c-approximation to FI(D, )
Variant with relative guarantees ((1 — ¢)6, ...) in the paper

Key Ingredient: Use results on VC-Dimension to compute |S| such that
for a sample S of size |S|, we have:

Pr(d itemset X : [fp(X

€

) — fs(X)] > 5) <0

Algorithm

input: D, 0,¢e,0

1) Compute |S| and create S using random sampling with replacement
2) Output FI(S, 0 — £/2)using exact algorithm

Theorem: Correctness
The set FI(S, 0 — £/2)is an s-approximation to FI(D, #)with probability
atleast 1 — ¢

V. The d-index of the dataset

In our case:

*P=0D

* For any itemset X, let TH(X) = set of transactions of D containing X
* Fp ={Tp(X)V itemset X}

If S C D is an c/2-approximation for(D, Fp):

£
@ < §,V itemset X

) — fs(X)| <e/2,V itemset X

l.e. ‘fD(

We need a bound to the VC-Dimension of(D, Fp)

Definition
The d-index d of a dataset D is the maximum integer such that D contains
at least d transactions of length at least d <= dis independent from |D]

E

The d-index can be computed with a single scan of the dataset
Theorem: d is an upper bound to the VC-Dimension of (D, Fp)
Theorem: there are datasets with VC-Dimension exactly d

l.e., the bound is strict

Example: this dataset has d-index d=3 s oo

chips coke pasta
bread coke chips

milk —coffes
pasta milk

with tight performance guarantees
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ll. Motivation, Goals and Constraints

Exact algorithms exist for the mining problems (Apriori, FPGrowth,...)

They have drawbacks:
* Need to scan dataset D multiple times
 Running time depends on size of D (number of transactions)
 TJoo expensive for very large datasets: disk access is slow

Key Observation: Data mining is exploratory in nature
Fast and good enough results are preferred to slow but exact

Goal: Speed up mining using a random sample of D while guaranteeing
good results
Sample = collection of transactions drawn uniformly at random from D

Constraints

o Sample should fit in main memory: no disk access — fast computation
* Size of sample must not depend on size of D

* Give probabilistic guarantees on quality of the results.

« Make no assumptions on the frequencies distribution.

IV. VC-Dimension

Tool from Statistical Learning Theory

 Describes “richness” of family of indicator functions

 Gives bound to sample size needed to approximately learn a
function

Definition
Given a set of points P and a family 7 C 2" (ranges),

the VC-Dimension of the range space (P,F) is the cardinality of the
largest A C P such that

{rnA :

Example: P = R?, F=halfspaces

re F} =24

Theorem: Bound to sample size
Given 0<¢,0< 1, if (P,F) has VC-Dimension =d, with probability > 1 — §,
a random sample S C P of size

! 1 If d does not de
N pend on |D|, then
‘S‘ Z 5_2 (d -+ log 5) |S| is also independent from |D]!
IS such that
fl 1SN f | -
‘ ‘ ‘S‘ < g, \V/f c F Simultaneous deviation bound on all the ranges!
P ~ e

Such a sample is called anc-approximation to (P,F)

VI. Experiments

We evaluated our method using datasets from FIMI repository

Results

 Sample always fits in main memory (hundreds of runs)
* TFI(S,0 —e/2) always an -approximation toFI(D, 0)

* Frequency accuracy even better than guaranteed

* Mining time significantly improved
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