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Data analytics Information

Volume

Variety

cleaning, inspecting, transforming, modeling, ...
Needs fast algorithms —s challenging due to Big Data {

Volume: data is large and grows fast
\ariety: no. of “questions” to answer using data is large (e.qg., itemsets)

[cost(a nalytics algorithm) = cost(Volume) + cost(Variety)]
e.q., cost(APriori) = cost(size dataset) + cost(no. of patterns)

Smart algorithms may cut cost(Variety) but cost(Volume) always takes over
\dea: cut cost(Volume) by analyzing only a subset of the dataset

5. Mining Frequent Itemsets and Assoc. Rules (1)

R., Upfal, “Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees”,
ECML PKDD'12, ACM TKDD'14
R., DeBrabant, Fonseca, Upfal, “PARMA: A Parallel Randomized Algorithm for Approximate Association Rules Mining in MapReduce”,

ACM CIKM'12
R., Vandin, “Finding the True Frequent Itemsets”, SIAM SDM'14

Settings: Transactional dataset D

Frequency of itemset X inD:
fo(X): fraction of D containing X
e.q., fp({bread,milk}) = 3/5

d Bread, Milk

Transaction

Bread, Diaper, Beer, Eggs

(VTR DiapeRBesXCokD _|ltems from 7

Bread, Milk, Diaper, Beer

| Bread, MilkyDiaper, Coke [|femsel

Tan et al. - Introduction to Data Mining

Task: Given 6 € (0,1), compute FI(D,0) = {(X, fp(X)) : [fp(X) >0}
Exact algorithms (APriori, ...) scan dataset multiple times: too slow
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Our goal: compute approximation A of FI(D,0) with following properties:
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Must not be in A A Must be in A
Can achieve goal by computing (= /2, §)-approximation of (fp(X))xcz

Algorithm

" d « max integer g s.t.D contains > g transactions of length > ¢
r < (2/*)(d +1n(1/6))

S <+ random sample of D of size r

_return FI(S,0 — ¢/2) )

Theorem:FI(S, 0 — =/2) has the required properties

Rangeset forFI(D,#): D=D,F={{reD : X e7},X CT}
Theorem:VC(D, F) < d

Evaluation: dataset from FIMI'04 repository

Accuracy much better than 8x speedup (and more!)
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2. Thesis Statement and Contributions

We use VC-dimension to obtain (probabilistically-guaranteed) high-quality\
approximations for many data analytics tasks by processing only a small
random sample of the data P

Data Analytics Task Contributions & Comparison with prev. work

Frequent Itemsets Sampling algorithm - smaller sample size

and (MapReduce+sampling) alg. - more scalable
Association Rules

Stat. test for False positives - more power

Sampling algorithm - smaller sample size

Betwenness Centrality |— . — .
Tighter analysis of existing algorithm

Database Query Selectivity |Sampling algorithm - smaller sample size

6. Mining Frequent Itemsets and Assoc. Rules (2)

Idea: improve scalability and accuracy using MapReduce
Previous algorithm used in boosting-like approach

Algorithm C"""mataD
1" Map: Create many samples in parallel. T R T
No. of samples and size to exploit resources | _smpevaim

1" Reduce: Mine each sample on dedicated reducer 'ﬁ*ﬁ’f‘f 'EE'

2" Map: Identity function 4 L

2" Reduce: Aggregate and filter mining results: £ Lﬁ ]
1) only itemsets that were frequentin many samples = == =

are considered frequent and sent to output - h*"'—
2) estimation of frequency is median of estimations = iy Sy
v
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Importantissue: avoid false positives in mining results
Settings: 7: unknown process generating transactions,
D collection ofi.i.d. samples from
temset X, ¢-(X) = »  7(Y):true frequency of X
YCZ,XCY
Task: Given @ € (0, 1), compute TFI(r,0) = {(X,t,.(X)
Can't be solved exactly with finite D
Our goal: compute 0" > 6 such that FI(D,¢") C TFI(x,0)
At same time, try to maximize |[FI(D,#")|, i.e., minimize 6 — @

(X)) >0}

Intuition: Variant of Knapsack to compute VC-Dim of Negative Border
NP but do not need exact solution
Results: Much more power (larger [FI(D, 6')]) w.r.t. traditional methods

3. Approximations and Limitations of Classic Approach

Tradeoff between sample size and quality of approximation is well studied

Given (ui)1<i<n,u; € [0,1],(@;)1<i<n iS (<. 0)-approximation of (u;)1<i<nif

(Pr(ﬂz’ S.t. |u; — U] >¢€) < 5)
Our goal: compute sample size | S| to obtain (<, §)-approximation

Classic bounds can not handle Big Data Variety (i.e., high values of »)
E.g., with Chernoff bound + Union bound, sample size is

1 1
S| =0 <6—2 (lnn—l—ln g>>

Dependency onlnn is too much for typical data analytics tasks

E.g., in Frequent Itemsets mining, In » is number of items, can be O(10%).

1 1

VC-dimension overcomes this issue; |S| = O <5—2 <VC((“i>1<i<”) + o 5))

/. Estimating Betweenness Centrality

R., Kornaropoulos, “Fast Approximation of Betweenness Centrality through Sampling”, ACM WSDM'14

Betweenness centrality: measure of vertex importance in graphs
Settings: Graph G = (V, E) |V| =n,|E| =m
b(w): fraction of Shortest Paths in & that pass through v

: ) Se:allSPsinG
1 1 v(puw) G.d
b(v) = n(n—1) 2 : 7'0 Suv: SPS from u 0v, Tuv = |Suo]
- pw€Se " )T o ={peSg : veElnt(p)}

Exact algorithm for (b(v)),cy takes time O(nm + nlogn) [Brandes01]
Our goal: fast computation of (¢, 4)-approximation using sampling
Algorithm

VD(G) <+ max{|p|,p € S¢} )

r«— (1/2c%)(log, (VD(G) — 2)| + 1 +1n(1/0))

b(v) « 0,Yv €V

fori < 1,...,r

(u,v) < random pair of vertices

Suv <—all SPs fromu to v (BFS, Dijkstra, bidirectional search)
p <= random SP from S,
b(w) < b(w) + 1/r,Vw € Int(p)

\return b(v),Vv e V Y,

Theorem:(b(v))yev isa (g, 6)-approximation for (b(v))vev
Rangeset for betweenness centrality: D = Sq, F = {T,,v € V'}
Theorem:VC(S¢, F) < |log,(VD(G) — 2)| + 1

Evaluation: Cimplementation, patch for igraph, on SNAP graphs

ail-Enron-u,|V|=36,692,|E|=367,662,6= 0.1,runs= 5 Undirected Random Barabasi-Albert Graphs, £=0.02, 5=0.1, runs=5
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4. Vapnik-Chervonenkis (VC)-Dimension
D: set of points (domain) (D, F)
7 collection of subsets of D (ranges) f rangeset

Forany C C D, let P = {C R : R € F}HC2°)
If Po = 2% C isshattered by F

[VC(D, F) =sup {|C|

; CQD/\PCIQC}]

Theorem [VapnikChervonenkis'71, Li et al. '08]
Assume\/C(D, F) < d.Let 0 < =, < 1,7 be a probabil. distrib. on D, and

( N
1 1
S| > (d log —)
. 52 5 J

4 )
Then, with probability > 1 -6, ||{x(R) |; Z 1r(a)| <e,VREF

W aES )
i.e., can compute (¢, 6)-approximation of (7(R))rer

S be a collection of samples from D w.r.t. = with

8. Estimating the Selectivity of Database Queries

R., Akdere, Cetintemel, Zdonik, Upfal, “ The VC-Dimension of SQL Queries and Selectivity Estimation through Sampling”, ECML PKDD'11

Database queries are composed of elementary operations (selection, joins,...)
Operations can be organized in many ways with same output (query plans)

Q A{i DBMS must choose plan with smallest execution time

NP-hard problem. Must use heuristics.
Common heuristic: perform small selectivity operations first

: Hrows in output of ¢
Selectivity of a query ¢: |ops(q) = —
. #rows 1n input of q |

Exact value not available before execution, must approximate.
DBMSs use histograms: independence, uniformity assumption<— not true

Our goal: Given class of queries @, compute sample size |S| such that
(05(a))qeqis (,9)-approximation to (cpB(q))qe0

Rangeset for aquery selectivity: D = DB, F = {output of ¢,q € Q}

Theorem: Let k=max no.of join operationsin a query from &
b= max no. of selection conditions in a query from &
m=max no. of columnsin a table

Then, VC(DB,F) = O(k*mb)

Evaluation:
Sample can fit into main memory —=estimation is fast
Estimate much closer to real value than quaranteed
Beat PostgreSQL and SQLServer by orders of magnitude

" Selectivity Estimation Relative Error, Select, Correlated Columns, m=2, b=8
10 ¢ e — T - .. .

TEmeer e aee s bee e et R e e e e BS T S e, O sTare e |

| 1 1 1 | | | | | | | | | 1 | 1 1
10° 10* 10°
Sample Size (tuples)



