
Definition: Cost of a schedule :p = (p1, . . . , pn)

cost✓(p) := lim
t!1

1

t

X

t0t

E(L✓(t
0))

Lemma: Given , for a c-schedule we have:p⇡

Theorem: The cost function is convex
 over all c-schedules.

Constrained Optimization
(Scalability Issue!)

cost✓(p) := lim
t!1

1

t

X

t0t

E(L✓(t
0)) =

X

S

⇡(S)

1� ✓(1� p(S))c

start with unif. schedule

update the schedule
using the weights

F (p⇤) = p⇤
iterate

p(i+1) = F (p(i))

p(0) = uniformWIGGINS!
Given: and ⇡2V

Theorem: If WIGGINS
converges to , then
 is optimal.

p
p

WIGGINS-APX!
Given: and I unif(I)

 is a set (sample)
of all final dest. of items

generated in a
time interval.

I

(MapReduce)

ITheorem: Let be a positive integer, , and let
be a sample gathered during a time interval of length

Let be an optimal schedule. If WIGGINS-APX converges
and return then,

with probability at least .

r

`(I) � 3(r ln(n) + ln(4))

✏2(1� ✓)
= O(ln(n))

✏ > 0

1� n�r

cost✓(p
⇤)  cost✓(p) 

1 + ✏

1� ✏
cost✓(p

⇤)

p
p⇤

{ahmad, matteo, eli}@cs.brown.edu

MODEL

MOTIVATION
Many applications require the detection of events in a network

as soon as they happen or shortly after, as the value of the
information obtained by detecting the events decays rapidly

as time passes.

Applications
News and Feeds, Algorithmic Trading, Anomaly detection,

Machine Malfunction, etc

PROBLEM DEFINITION

ALGORITHMS

Nodes V = {1, 2, . . . , n}

Novelty of each item decays:
After time steps the novelty is for t ✓t ✓ 2 (0, 1)

A set is the final destination of an item
with probability

S ✓ V
⇡(S)

Limited budget/resources per time-step
Number of allowed simultaneous probes = c
(memoryless) probing c-schedule: A distribution

picks c nodes to probe, independently sampled from
p = (p1, . . . , pn)

p

EXPERIMENTAL RESULTS

time
tt� 1 t+ 1

L✓(t)

+

+
✓

✓2

✓

Load of the system at time

CHALLENGE

 -Optimal Probing Schedule Problem
Find a c-schedule that minimizes
(✓, c)

p
cost✓(p)

Lagrange multipliers

Datasets #nodes #edges (|V
1K

|, |V
500

|, |V
100

|) gen. rate
Enron-Email 36692 367662 (9,23,517) 7.22
Brightkite 58228 428156 (2,7,399) 4.54
web-Notredame 325729 1497134 (43,80,1619) 24.49
web-Google 875713 5105039 (134,180,3546) 57.86

Table 1: The datasets, corresponding statistics, and the rate of

generating new items at each step.

Environment and Datasets. We implemented wiggins-

apx in C++. The implementation of wiggins-apx never
loads the entire sample to the main memory, which makes it
very practical when using large samples. The experiments
were run on a Opteron 6282 SE CPU (2.6 GHz) with 12GB
of RAM. We tested our method on graphs from the SNAP
repository4 (see Table 1 for details). We always consider the
graphs to be directed, replacing undirected edges with two
directed ones.
Generating process. The generating process � = (F , fi)
we use in our experiments (except those in Sect. 5.1.1) sim-
ulates an Independent-Cascade (IC) model [17]. Since ex-
plicitly computing fi(S) in this case does not seem possible,
we simulate the creation of items according to this model as
follows. At each time t, items are generated in two phases:
a “creation” phase and a “di�usion” phase. In the creation
phase, we simulate the creation of “rumors” at the nodes:
we flip a biased coin for each node in the graph, where the
bias depends on the out-degree of the node. We assume a
partition of the nodes into classes based on their out-degrees,
and, we assign the same head probability for the biased coins
of nodes in the same class, as shown in Table 2. In Table 1,
for each dataset we report the size of the classes and the ex-
pected number of flipped coins with outcome head at each
time (rightmost column). Let now v be a node whose coin

Class Nodes in class Bias
V

1K

{i œ V : deg

+(i) Ø 1000} 0.1
V

500

{i œ V : 500 Æ deg

+(i) < 1000} 0.05
V

100

{i œ V : 100 Æ deg

+(i) < 500} 0.01
V

0

{i œ V : deg

+(i) < 100} 0.0

Table 2: Classes and bias for the generating process.

had outcome head in the most recent flip. In the “di�usion”
phase we simulate the spreading of the “rumor” originating
at v through network according to the IC model, as follows.
For each directed edge e = u æ w we fix a probability
p

e

that a rumor that reached u is propagated through this
edge to node w (as in IC model), and events for di�erent
rumors and di�erent edges are independent. Following the
literature [5, 6, 16, 17, 33], we use p

uæw

= 1

deg≠
(w)

. If we
denote with S the final set of nodes that the rumor created
at v reached during the (simulated) di�usion process (which
always terminates), we have that through this process we
generated an item (t, S), without the need to explicitly de-
fine fi(S).

5.1 Efficiency and Accuracy
In Sect. 4.1 we showed that when a run of wiggins-

apx converges (according to a sample I) the computed c-
schedule is optimal with respect to the sample I (Lemma 2).
4

http://snap.stanford.edu

In our first experiment, we measure the rate of convergence
and the execution time of wiggins-apx. We fix ‘ = 0.1,
◊ = 0.75, and consider c œ {1, 3, 5}. For each dataset, we
use a sample I that satisfies (12), and run wiggins-apx

for 30 iterations. Denote the schedule computed at round
i by p

i. As shown in Figure 1, the sequence of cost values
of the schedules p

i’s, cost

◊

(pi, I), converges extremely fast
after few iterations.

Datasets |I| avg. item size avg. iter. time (sec)
Enron-Email 97309 12941.33 204.59
Brightkite 63652 17491.08 144.35
web-Notredame 393348 183.75 10.24
web-Google 998038 704.74 121.88

Table 3: Sample size, average size of items in the sample, and the

running time of each iteration in wiggins-apx (for c = 1).

For each graph, the size of the sample I, the average size
of sets in I, and the average time of each iteration is given
in Table 3. Note that the running time of each iteration is a
function of both sample size and sizes of the sets (informed-
sets) inside the sample.

iterations
0 5 10 15 20 25 30

co
st

7

8

9

10

11

12

13

14

15 ENRON-EMAIL c=1
c=3
c=5

iterations
0 5 10 15 20 25 30

co
st

4

5

6

7

8

9

10
BRIGHTKITE c=1

c=3
c=5

iterations
0 5 10 15 20 25 30

co
st

91

92

93

94

95

96

97

98 WEB-NOTREDAME
c=1
c=3
c=5

iterations
0 5 10 15 20 25 30

co
st

195

200

205

210

215

220

225

230

235
WEB-GOOGLE c=1

c=3
c=5

Figure 1: The cost of intermediate c-schedules at iterations of

wiggins-apx according to I.

Next, we extract the 1-schedules output by wiggins-apx,
and compare its cost to four other natural schedules: unif,
outdeg, indeg, and totdeg that probe each node, respec-
tively, uniformly, proportional to its out-degree, proportional
to its in-degree, and proportional to the number of incident
edges. Note that for undirected graphs outdeg, indeg, and
totdeg are essentially the same schedule.

To have a fair comparison among the costs of these sched-
ules and wiggins-apx, we calculate their costs according to
10 independent samples, I

1

, . . . , I
10

that satisfy (12), and
compute the average. The results are shown in Table 4, and
show that wiggins-apx outperforms the other four sched-
ules.

Dataset wiggins-apx uniform outdeg indeg totdeg

Enron-Email 7.55 14.16 9.21 9.21 9.21
Brightkite 4.85 9.64 6.14 6.14 6.14
web-Notredame 96.10 97.78 97.37 97.43 97.40
web-Google 213.15 230.88 230.48 230.47 230.47

Table 4: Comparing the costs of 5 di�erent 1-schedules.

5.1.1 A Test on Convergence to Optimal Schedule
Here, we further investigate the convergence of wiggins-

apx, using an example graph and process for which we
know the unique optimal schedule. We study how close the
wiggins-apx output is to the optimal schedule when (i) we
start from di�erent initial schedules, p

0, or (ii) we use sam-
ples I’s obtained during time intervals of di�erent lengths.

Suppose G = (V, E) is the complete graph where V = [n].
Let � = (F , fi) for F = {S œ 2[n] | 1 Æ |S| Æ 2}, and
fi(S) = 1

|F| . It is easy to see that cost

◊

(p) is a symmetric
function, and thus, the uniform schedule is optimal. More-
over, by Corollary 1 the uniform schedule is the only optimal
schedule, since {v} œ F for every v œ V . Furthermore, we let
◊ = 0.99 to increase the sample complexity (as in Lemma 3)
and make it harder to learn the uniform/optimal schedule.

length of time interval
5 10 20 50 100 200 500 1K 2K 5K 10K 20K

co
st

40

50

60

70

80

90

length of time interval
5 10 20 50 100 200 500 1K 2K 5K 10K 20K

va
ria

tio
n

di
st

an
ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2: The cost of wiggins-apx outputs and their variation dis-

tance to the optimal schedule: The top and bottom edge of each box

are the 25

th

and 75

th

percentiles respectively , and the median (50

th

percentile) is shown by a red line segment. The + symbols denote

outliers, i.e., points larger than q
3

+ 1.5(q
3

≠ q
1

) or smaller than

q
1

≠ 1.5(q
3

≠ q
1

), where q
1

and q
3

are the 25

th

and 75

th

percentiles,

respectively. The whiskers extend to the most extreme data points

that are not outliers.

In our experiments we run the wiggins-apx algorithm,
using (i) di�erent random initial schedules, and (ii) samples
I obtained from time intervals of di�erent lengths. For each
sample, we run wiggins-apx 10 times with 10 di�erent ran-
dom initial schedules, and compute the exact cost of each
schedule, and its variation distance to the uniform schedule.
Our results are plotted in Figure 2, and as shown, by increas-
ing the sample size (using longer time intervals of sampling)
the output schedules gets very close to the uniform schedule
(the variance gets smaller and smaller).

5.2 Dynamic Settings
In this section, we present experimental results that show

how our algorithm can adapt itself to the new situation. The
experiment is illustrated in Fig. 3. For each graph, we start
by following an optimal 1-schedule in the graph. At the be-
ginning of each “gray” time interval, the labels of the nodes
are permuted randomly, to impose great disruptions in the

time
500 1000 1500 2000 2500 3000

lo
ad

5

10

15

20

25

30

Enron-Email

time
500 1000 1500 2000 2500 3000

lo
ad

2

4

6

8

10

12

14

16

18

20

Brightkite

time
500 1000 1500 2000 2500 3000 3500 4000

lo
ad

180

190

200

210

220

230

240

250

260

web-Google

time
500 1000 1500 2000 2500 3000 3500

lo
ad

70

80

90

100

110

120

web-Notredame

Figure 3: Perturbation, Sampling, and Adapting (For details see

Section 5.2).

system. Following that, at the beginning of each “green”
time interval our algorithm starts gathering samples of �.
Then, wiggins-apx computes the schedule for the new sam-
ple, using 50 rounds of iterations, and starts probing. The
length of each colored time interval is R = 3(log(n)+log(2))

‘

2

(1≠◊)

,
for ‘ = 0.5 and ◊ = 0.75, motivated by Theorem 3.

Since the cost function is defined asymptotically (and ex-
plains the asymptotic behavior of the system in response to
a schedule), in Figure 3 we plot the load of the system L

◊

(t)
over the time (blue), and the average load in the normal and
perturbed time intervals (red). Based on this experiment,
and as shown in Figure 3, after adapting to the new sched-
ule, the e�ect of the disruption caused by the perturbation
disappears immediately. Note that when the di�erence be-
tween the optimal cost and any other schedule is small (like
web-Notredame), the jump in the load will be small (e.g.,
as shown in Figure 1 and Table 4, the cost of the initial
schedule for web-Notredame is very close the optimal cost,
obtained after 30 iteration).

6. CONCLUSIONS
We formulate and study the (◊, c)-Optimal Probing Sched-

ule Problem, which requires to find the best probing sched-
ule that allows an observer to find most pieces of informa-
tion recently generated by a process �, by probing a limited
number of nodes at each time step.

We design and analyze an algorithm, wiggins, that can
solve the problem optimally if the parameters of the process
� are known, and then design a variant that computes a
high-quality approximation of the optimum schedule when
only a sample of the process is available. We also show that
wiggins can be adapted to the MapReduce framework of

Dataset wiggins-apx uniform outdeg indeg totdeg

Enron-Email 7.55 14.16 9.21 9.21 9.21
Brightkite 4.85 9.64 6.14 6.14 6.14
web-Notredame 96.10 97.78 97.37 97.43 97.40
web-Google 213.15 230.88 230.48 230.47 230.47

Table 4: Comparing the costs of 5 di�erent 1-schedules.

5.1.1 A Test on Convergence to Optimal Schedule
Here, we further investigate the convergence of wiggins-

apx, using an example graph and process for which we
know the unique optimal schedule. We study how close the
wiggins-apx output is to the optimal schedule when (i) we
start from di�erent initial schedules, p

0, or (ii) we use sam-
ples I’s obtained during time intervals of di�erent lengths.

Suppose G = (V, E) is the complete graph where V = [n].
Let � = (F , fi) for F = {S œ 2[n] | 1 Æ |S| Æ 2}, and
fi(S) = 1

|F| . It is easy to see that cost

◊

(p) is a symmetric
function, and thus, the uniform schedule is optimal. More-
over, by Corollary 1 the uniform schedule is the only optimal
schedule, since {v} œ F for every v œ V . Furthermore, we let
◊ = 0.99 to increase the sample complexity (as in Lemma 3)
and make it harder to learn the uniform/optimal schedule.

length of time interval
5 10 20 50 100 200 500 1K 2K 5K 10K 20K

co
st

40

50

60

70

80

90

length of time interval
5 10 20 50 100 200 500 1K 2K 5K 10K 20K

va
ria

tio
n

di
st

an
ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2: The cost of wiggins-apx outputs and their variation dis-

tance to the optimal schedule: The top and bottom edge of each box

are the 25

th

and 75

th

percentiles respectively , and the median (50

th

percentile) is shown by a red line segment. The + symbols denote

outliers, i.e., points larger than q
3

+ 1.5(q
3

≠ q
1

) or smaller than

q
1

≠ 1.5(q
3

≠ q
1

), where q
1

and q
3

are the 25

th

and 75

th

percentiles,

respectively. The whiskers extend to the most extreme data points

that are not outliers.

In our experiments we run the wiggins-apx algorithm,
using (i) di�erent random initial schedules, and (ii) samples
I obtained from time intervals of di�erent lengths. For each
sample, we run wiggins-apx 10 times with 10 di�erent ran-
dom initial schedules, and compute the exact cost of each
schedule, and its variation distance to the uniform schedule.
Our results are plotted in Figure 2, and as shown, by increas-
ing the sample size (using longer time intervals of sampling)
the output schedules gets very close to the uniform schedule
(the variance gets smaller and smaller).

5.2 Dynamic Settings
In this section, we present experimental results that show

how our algorithm can adapt itself to the new situation. The
experiment is illustrated in Fig. 3. For each graph, we start
by following an optimal 1-schedule in the graph. At the be-
ginning of each “gray” time interval, the labels of the nodes
are permuted randomly, to impose great disruptions in the

time
500 1000 1500 2000 2500 3000

lo
ad

5

10

15

20

25

30

Enron-Email

time
500 1000 1500 2000 2500 3000

lo
ad

2

4

6

8

10

12

14

16

18

20

Brightkite

time
500 1000 1500 2000 2500 3000 3500 4000

lo
ad

180

190

200

210

220

230

240

250

260

web-Google

time
500 1000 1500 2000 2500 3000 3500

lo
ad

70

80

90

100

110

120

web-Notredame

Figure 3: Perturbation, Sampling, and Adapting (For details see

Section 5.2).

system. Following that, at the beginning of each “green”
time interval our algorithm starts gathering samples of �.
Then, wiggins-apx computes the schedule for the new sam-
ple, using 50 rounds of iterations, and starts probing. The
length of each colored time interval is R = 3(log(n)+log(2))

‘

2

(1≠◊)

,
for ‘ = 0.5 and ◊ = 0.75, motivated by Theorem 3.

Since the cost function is defined asymptotically (and ex-
plains the asymptotic behavior of the system in response to
a schedule), in Figure 3 we plot the load of the system L

◊

(t)
over the time (blue), and the average load in the normal and
perturbed time intervals (red). Based on this experiment,
and as shown in Figure 3, after adapting to the new sched-
ule, the e�ect of the disruption caused by the perturbation
disappears immediately. Note that when the di�erence be-
tween the optimal cost and any other schedule is small (like
web-Notredame), the jump in the load will be small (e.g.,
as shown in Figure 1 and Table 4, the cost of the initial
schedule for web-Notredame is very close the optimal cost,
obtained after 30 iteration).

6. CONCLUSIONS
We formulate and study the (◊, c)-Optimal Probing Sched-

ule Problem, which requires to find the best probing sched-
ule that allows an observer to find most pieces of informa-
tion recently generated by a process �, by probing a limited
number of nodes at each time step.

We design and analyze an algorithm, wiggins, that can
solve the problem optimally if the parameters of the process
� are known, and then design a variant that computes a
high-quality approximation of the optimum schedule when
only a sample of the process is available. We also show that
wiggins can be adapted to the MapReduce framework of

Convergence in WIGGINS-APX A test on Convergence to Optimal Schedule Dynamic Settings

Wiggins: Detecting Valuable Information
 in Dynamic Networks Using
 Limited Resources

Supported by NSF grant IIS-1247581

TWO SIGMA

Ahmad Mahmoody, Matteo Riondato, Eli Upfal

BROWN

http://cs.brown.edu

