

# Semi-Supervised Aggregation of Dependent Weak **Supervision Sources With Performance Guarantees**

## Introduction

**Binary classification** 

$$y: \mathcal{X} \longrightarrow \{0, 1\}$$

**Classification domain** with distribution  ${\cal D}$ 

Given hypothesis class  $\mathcal{H}$ , we want to find the hypothesis h s.t.

$$\min_{h \in \mathcal{H}} \varepsilon(h) := \min_{h \in \mathcal{H}} \Pr_{x \sim \mathcal{D}}(y(x) \neq h(x))$$

error of h

y(x) = 1

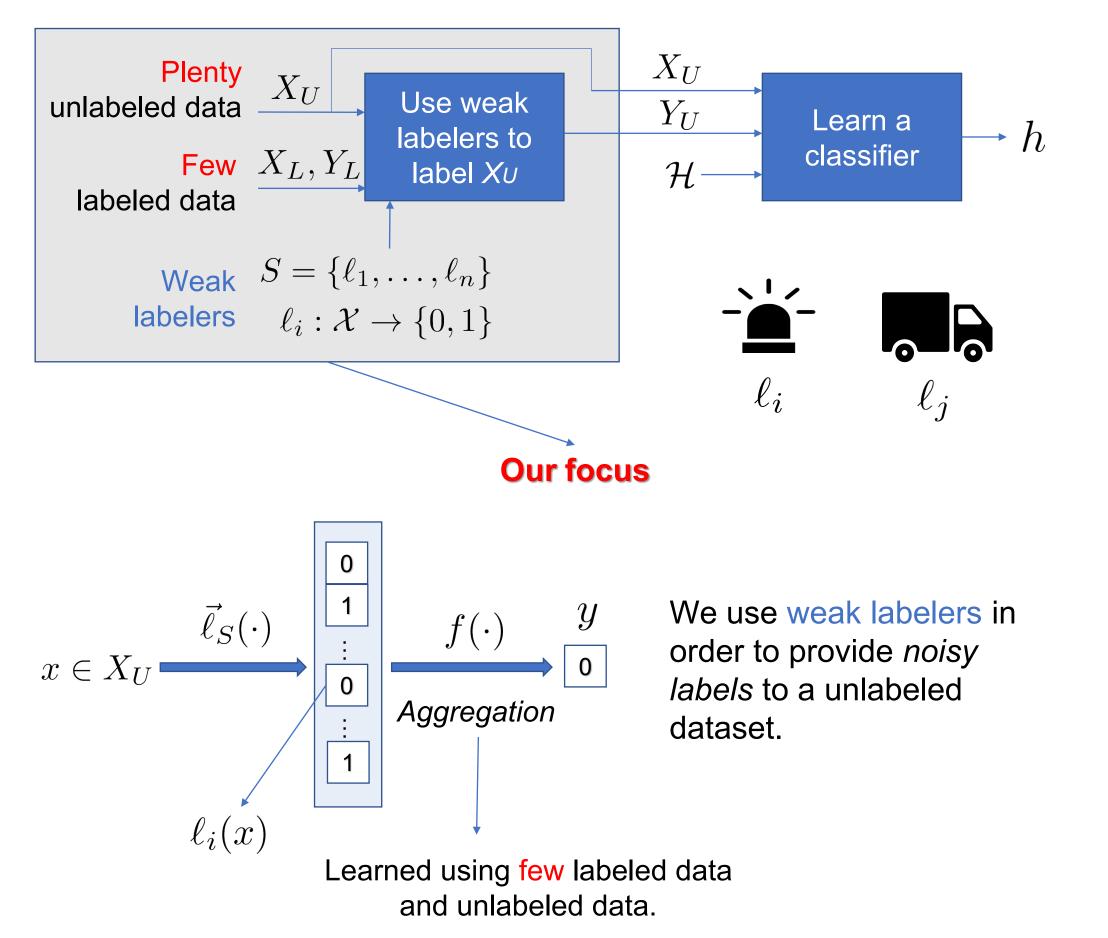
Example: classify ambulance.

y(x) = 0

Supervised learning of a binary classification task requires a lot of labeled data for high-dimensional hypothesis classes (e.g., DNN).

Labeled data is costly and scarce for a lot of binary classification task of interest.

#### Weak Supervision Framework [1]



Alessio Mazzetto\*, Dylan Sam, Andrew Park, Eli Upfal, Stephen H. Bach

\*alessio\_mazzetto@brown.edu

# Contribution

Previous work unrealistically usually assumes *independence* or a distribution family between weak labelers' errors to do aggregation.

## **Our contribution:**

- First theoretical bound to the worst-case error of the majority vote of a set of weak labelers without those assumptions.
- Novel algorithm that uses the bound above to provide the first theoretical guarantees in learning an aggregation of an arbitrary set of weak labelers.

## Intuition

## Preliminary definitions:

- easy to estimate with • Let error rate of *i*-th labeler be  $\epsilon_i = \varepsilon(\ell_i) \longrightarrow$ few labeled data
- Let  $S(\vec{\epsilon})$  be the set of all set of labelers that have error rates equal to

$$\vec{\epsilon} = (\epsilon_1, \dots, \epsilon_n)$$

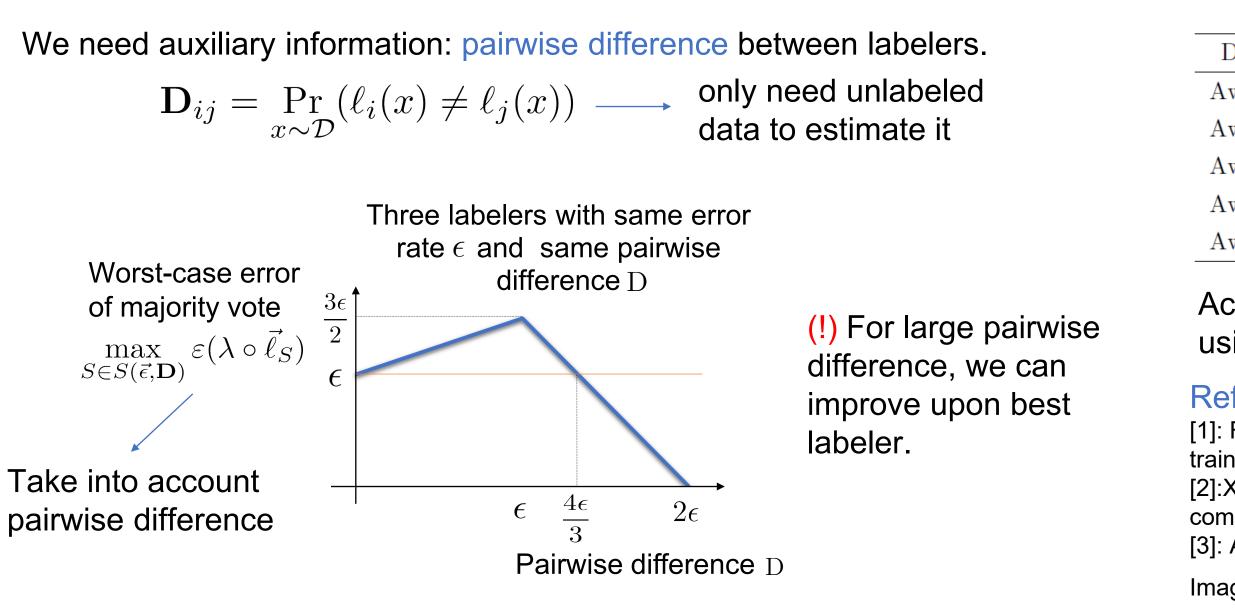
• Given a vector  $\vec{a} \in \{0,1\}^n$ , let  $\lambda(\vec{a})$  be its majority vote.

Our result (knowledge of error rates is not enough):

$$\max_{S \in S(\vec{\epsilon})} \varepsilon(\lambda \circ \vec{\ell}_S) \ge \operatorname{median}\{\epsilon_1, \dots, \epsilon_n\}$$

Worst-case, we cannot improve upon the best labeler, if we only know their error rates

(!) With independence assumption, error of majority vote would go to zero.





# Method

Goal: find subset of weak labelers with lowest worst-case error on their majority vote.

- Closed formula for set of three weak labelers.
- Heuristic: iteratively add the two labelers that yield the lowest worst-case error on their majority vote.

For a set of labelers  $S = \{\ell_1, \ldots, \ell_n\}$  with error rate  $\vec{\epsilon}$  and pairwise difference  $\mathbf{D}$ , we have that:

$$\max_{S \in \mathcal{S}(\vec{\epsilon}, \mathbf{D})} \varepsilon(\lambda \circ \vec{\ell}_S) = \max \sum_{\vec{a} \in \{0, 1\}^n : |\vec{a}|_1 < n/2} p_{\vec{a}}$$

$$(a) \sum_{\vec{a} \in \{0, 1\}^n : a_i = 0} p_{\vec{a}} = \epsilon_i \quad \text{for } i = 1, \dots, n$$

$$(b) \sum_{\vec{a} \in \{0, 1\}^n : a_i \neq a_j} p_{\vec{a}} = \mathbf{D}_{ij} \quad \text{for } i \neq j$$

$$(c) \sum_{\vec{a}} p_{\vec{a}} = 1 \qquad \text{Linear program with O}(2^n) \text{ variables and O}(n^2) \text{ constraints}$$

$$(d) \quad p_{\vec{a}} \ge 0 \quad \forall \vec{a}$$

## Experiments

Animals With Attribute (AwA2 [2]) dataset. Each class has 85 attributes, used to create weak classifiers.

|          | Baselines Sta  |                | te-of-the-art [3] |                | Dur methods  |                |
|----------|----------------|----------------|-------------------|----------------|--------------|----------------|
| Dataset  | Majority Vote  | Dawid-Skene    | ALL               | PGMV           | PGMV-P       | PGMV-D         |
| awA2(1)  | $79.1 \pm 1.1$ | $80.0 \pm 1.8$ | $84.2\pm0.9$      | $82.0 \pm 1.1$ | $85.5\pm0.9$ | $84.3 \pm 1.3$ |
| awA2(2)  | $90.0\pm0.7$   | $94.7\pm0.4$   | $93.5\pm0.5$      | $93.7\pm0.4$   | $93.7\pm0.5$ | $94.1\pm0.4$   |
| awA2 (3) | $92.3 \pm 1.0$ | $96.7\pm0.3$   | $95.5\pm0.5$      | $95.4\pm0.3$   | $95.9\pm0.3$ | $96.3 \pm 0.2$ |
| awA2(4)  | $94.2\pm0.6$   | $96.8\pm0.2$   | $93.8\pm0.8$      | $96.8\pm0.2$   | $97.0\pm0.3$ | $96.8\pm0.2$   |
| awA2(5)  | $97.6\pm0.6$   | $99.0\pm0.2$   | $96.3\pm0.7$      | $97.5\pm0.3$   | $98.3\pm0.3$ | $98.8\pm0.2$   |

#### Accuracy over different tasks, grouped by quality of the weak labelers, using ~800 unlabeled and labeled data.

#### **References:**

- [1]: Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., and R<sup>´</sup>e, C. (2017). Snorkel: Rapid training data creation with weak supervision. PVLDB.
- [2]:Xian, Y., Lampert, C. H., Schiele, B., and Akata, Z. (2018). Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. PAMI
- [3]: Arachie, C. and Huang, B. (2019). Adversarial label learning. AAAI.