

Semi-Supervised Aggregation of Dependent Weak **Supervision Sources With Performance Guarantees**

Introduction

Binary classification

$$y: \mathcal{X} \longrightarrow \{0, 1\}$$

Classification domain with distribution ${\cal D}$

Given hypothesis class \mathcal{H} , we want to find the hypothesis h s.t.

$$\min_{h \in \mathcal{H}} \varepsilon(h) := \min_{h \in \mathcal{H}} \Pr_{x \sim \mathcal{D}}(y(x) \neq h(x))$$

error of h

y(x) = 1

Example: classify ambulance.

y(x) = 0

Supervised learning of a binary classification task requires a lot of labeled data for high-dimensional hypothesis classes (e.g., DNN).

Labeled data is costly and scarce for a lot of binary classification task of interest.

Weak Supervision Framework [1]

Alessio Mazzetto*, Dylan Sam, Andrew Park, Eli Upfal, Stephen H. Bach

*alessio_mazzetto@brown.edu

Contribution

Previous work unrealistically usually assumes *independence* or a distribution family between weak labelers' errors to do aggregation.

Our contribution:

- First theoretical bound to the worst-case error of the majority vote of a set of weak labelers without those assumptions.
- Novel algorithm that uses the bound above to provide the first theoretical guarantees in learning an aggregation of an arbitrary set of weak labelers.

Intuition

Preliminary definitions:

- easy to estimate with • Let error rate of *i*-th labeler be $\epsilon_i = \varepsilon(\ell_i) \longrightarrow$ few labeled data
- Let $S(\vec{\epsilon})$ be the set of all set of labelers that have error rates equal to

$$\vec{\epsilon} = (\epsilon_1, \dots, \epsilon_n)$$

• Given a vector $\vec{a} \in \{0,1\}^n$, let $\lambda(\vec{a})$ be its majority vote.

Our result (knowledge of error rates is not enough):

$$\max_{S \in S(\vec{\epsilon})} \varepsilon(\lambda \circ \vec{\ell}_S) \ge \operatorname{median}\{\epsilon_1, \dots, \epsilon_n\}$$

Worst-case, we cannot improve upon the best labeler, if we only know their error rates

(!) With independence assumption, error of majority vote would go to zero.

Method

Goal: find subset of weak labelers with lowest worst-case error on their majority vote.

- Closed formula for set of three weak labelers.
- Heuristic: iteratively add the two labelers that yield the lowest worst-case error on their majority vote.

For a set of labelers $S = \{\ell_1, \ldots, \ell_n\}$ with error rate $\vec{\epsilon}$ and pairwise difference \mathbf{D} , we have that:

$$\max_{S \in \mathcal{S}(\vec{\epsilon}, \mathbf{D})} \varepsilon(\lambda \circ \vec{\ell}_S) = \max \sum_{\vec{a} \in \{0, 1\}^n : |\vec{a}|_1 < n/2} p_{\vec{a}}$$

$$(a) \sum_{\vec{a} \in \{0, 1\}^n : a_i = 0} p_{\vec{a}} = \epsilon_i \quad \text{for } i = 1, \dots, n$$

$$(b) \sum_{\vec{a} \in \{0, 1\}^n : a_i \neq a_j} p_{\vec{a}} = \mathbf{D}_{ij} \quad \text{for } i \neq j$$

$$(c) \sum_{\vec{a}} p_{\vec{a}} = 1 \qquad \text{Linear program with O}(2^n) \text{ variables and O}(n^2) \text{ constraints}$$

$$(d) \quad p_{\vec{a}} \ge 0 \quad \forall \vec{a}$$

Experiments

Animals With Attribute (AwA2 [2]) dataset. Each class has 85 attributes, used to create weak classifiers.

	Baselines Sta		te-of-the-art [3]		Dur methods	
Dataset	Majority Vote	Dawid-Skene	ALL	PGMV	PGMV-P	PGMV-D
awA2(1)	79.1 ± 1.1	80.0 ± 1.8	84.2 ± 0.9	82.0 ± 1.1	85.5 ± 0.9	84.3 ± 1.3
awA2(2)	90.0 ± 0.7	94.7 ± 0.4	93.5 ± 0.5	93.7 ± 0.4	93.7 ± 0.5	94.1 ± 0.4
awA2 (3)	92.3 ± 1.0	96.7 ± 0.3	95.5 ± 0.5	95.4 ± 0.3	95.9 ± 0.3	96.3 ± 0.2
awA2(4)	94.2 ± 0.6	96.8 ± 0.2	93.8 ± 0.8	96.8 ± 0.2	97.0 ± 0.3	96.8 ± 0.2
awA2(5)	97.6 ± 0.6	99.0 ± 0.2	96.3 ± 0.7	97.5 ± 0.3	98.3 ± 0.3	98.8 ± 0.2

Accuracy over different tasks, grouped by quality of the weak labelers, using ~800 unlabeled and labeled data.

References:

- [1]: Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., and R[´]e, C. (2017). Snorkel: Rapid training data creation with weak supervision. PVLDB.
- [2]:Xian, Y., Lampert, C. H., Schiele, B., and Akata, Z. (2018). Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. PAMI
- [3]: Arachie, C. and Huang, B. (2019). Adversarial label learning. AAAI.