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Tools for Uniform Convergence

Family F ⊆ X → [0, r] ⊆ R Sample x ∼ Dm Rademacher σ ∼ U(±1)
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The Wimpy Variance:

Empirical True
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(Empirical) Centralization

The Symmetrization Inequality:
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The Khintchine and Massart inequalities tell us that
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ProblemProblem: need to know ED[F ] to centralize!

IdeaIdea : Use ERA of empirically centralized family R̂m(F − Êx[F ],x)
Lemma: Empirical Centralization Bias
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Perceived Problems with the
Rademacher Average

• Common criticisms of Rademacher averages

– “Highly theoretical tool”

– “Not useful in practice”

– “Fail to explain”generalization of popular ML methods

• Where do these claims come from?

– Is the symmetrization inequality tight?

– Do we have sharp tail bounds on the empirical SD?

– Are data-dependent bounds on R̂m(F ,x) tight?
• In standard practice: no, no, and no!

– To“fix” the bounds, we must repair every part of them

– Can we match lower-bounds at every step?

∗ Minimax mean-estimation bound: m ∈Ω
vsup ln 1

δ
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– The loosest bound is the bottleneck!

Standard McDiarmid Bounds
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Can we break the

M c D i a r m i d b o t t l e n e c k ?M c D i a r m i d b o t t l e n e c k ?

Target: Bousquet’s Inequality

We want dependence on vsup, not v
raw
sup or r2

In particular, we want to match Bousquet’s inequality :
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∣∣∣∣≤2Rm(F ,D)+

r ln1δ
3m

+

√
2
(
vsup+4rRm(F ,D)

)
ln1

δ

m

We show that v̂sup is sufficient to sharply bound vsup

With High Probability

Theorem: Concentration of Empirically Centralized RAs

With probability at least 1− δ over choice of x:
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The Monte-Carlo Method: Given σ ∈ (±1)n×m, define
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Theorem: Monte-Carlo Error Bounds

With probability at least 1− δ over choice of σ ∼ Un×m(±1):
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Comparative Analysis of Tail Bounds

• Prior WorkPrior Work : with probability at least 1− δ, we may bound the SD as
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– Implicit dependence of Ω
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– Prior work: Monte-Carlo requires n ∈Ω r2
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– This work: n = 1 is asymptotically optimal

• This WorkThis Work : With probability at least 1− δ, we may bound the SD as
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– All vrawsup dependence moved to vsup dependence

– Can substitute v̂sup and Monte-Carlo ERAs

• Versus LocalizationVersus Localization

– Complementary methods: first and second moment corrections

– Localization often conflates raw and centralized variances
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