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Can we break the

MeDiarmid bottlemececk?

Target: Bousquet’s Inequality
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We want dependence on vgyp, not vgyy or r

In particular, we want to match Bousquet’s inequality:
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We show that vgyp 1s sufficient to sharply bound vey
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(Empirical) Centralization

The Symmetrization Inequality: - CENTRALIZED ~
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The Khintchine and Massart inequalities tell us that
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Problem: need to know Ep|F]| to centralize!

Idea: Use ERA of empirically centralized family R, (F — Ex|F], )

Lemma: Empirical Centralization Bias
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Perceived Problems with the
Rademacher Average

e Common criticisms of Rademacher averages
— “Highly theoretical tool”

— “Not usetful in practice”

— “Fail to explain” generalization of popular ML methods

e Where do these claims come from?

— Is the symmetrization inequality tight?
— Do we have sharp tail bounds on the empirical SD?
— Are data-dependent bounds on f&m(]—— , ) tight?

e In standard practice: no, no, and no!

— To “fix” the bounds, we must repair every part of them

— Can we match lower-bounds at every step?
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— The loosest bound is the bottleneck!

With High Probability

Theorem: Concentration of Empirically Centralized RAs

With probability at least 1 — 0 over choice of a:
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The Monte-Carlo Method: Given o € (4+1)"*" define
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Comparative Analysis of Tail Bounds

e Prior Work: with probability at least 1 — 9, we may bound the SD as
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— Prior work: Monte-Carlo requires n € Q-—raw —raw trials
sup

— Implicit dependence of £2

— This work: n =1 is asymptotically optimal

e This Work: With probability at least 1 — 0, we may bound the SD as
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— All vy dependence moved to vgyp dependence
— Can substitute vgyp and Monte-Carlo ERAs
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o Versus LLocalization

— Complementary methods: first and second moment corrections

— Localization often conflates raw and centralized variances
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