
Clustering of Musical Genres

Henry Wallace

November 17, 2015

1 Summary
The aim of this paper is to better understand the landscape of musical genres.
We use public tag data (folksonomies) to these discover genres, and make use of
APIs from the music site Last.fm gather tag data for songs and artists. To be
comprehensive, a uniform sampling of tag documents will be used. API calls are
slow, however, while there are about 100 million artists on the database; so we
sample with a Markov chain that converges to a unifrom stationary distribution.

With a corpus of tag multisets, each associated with an artist, there are
several ways to define a genre. I explore simple co-occurrences, lower-rank rep-
resentations of tags (Latent Semantic Indexing), and probability distributions
of tags (Latent Dirichlet Allocation). For each of these we can define a dis-
tance function, respectively: relative frequency, cosine similarity, and Hellinger
distance.

Once distances have been defined we can cluster the genres into either flat
or nested clustering. For flat clustering, I show how Kohenen’s Self Organizing
Maps and correlation clustering via genetic algorithms can be used to show
spatial relations between genres where K-means fails. To generate a nested
clustering I employ hierarchical clustering, with complete linkage.

2 Motivation
The prevalence of online music networks has allowed for listeners to graffiti a vast
amount of tag data to artists, albums, and songs. Genres are usually defined
in terms by professionals who write for music journals. While there have been
sites (e.g. Ishkur’s Guide) that paint a picture of genres from an single experts
eye, it will be interesting to see what the general listener’s view of the musical
landscape is, and to see how it stands up to the experts view.

While there has been some past work on generating flat clusterings of mu-
sical tag data, there has been little work that explores nested clusterings. It
proves interesting to see how the data describes it to be. In addition, once
clustering are generated, additional tagging data can be superimposed. For in-
stance, Last.fm provides geographic information as well as its folksonomic tags.
Thus, geographic patterns could be easily perceived from the genre clustering.

1

http://www.last.fm/api
http://techno.org/electronic-music-guide/

This provides a great way to show what genres originate from what countries,
with little effort scraping for geographic associations.

3 Sampling Tag Data
Data from Last.fm is not publicly available for download in mass. Instead
an API is offered that allows, in particular, the queries Artist.getSimilar and
Artist.getTopTags. These methods are not described by the API, however, they
ostenbily return a list of related artists, and artist tag frequencies, respectively.
We access the API via the Python wrapper pylast to more easily manipulate
the data. Each API retrieval takes about 1 second; and according to a posted
comment by a Last.fm employee on Quora there are about 100 million artists in
their database. Thus, downloading all of the data via API retrievals is certainly
infeasible.

For the purposes of discovering non-local features for genres, a uniform sam-
ple of artists will be collected. To do so we’ll employ a random walk on a graph
G, whose vertices are all artists on Last.fm’s database, and whose edges are
enumerated by Artist.getSimilar. We’ll assume that G is connected, and undi-
rected. The problem could be trivially solved if there existed a table of merely
artist names, from which we could sample at unifrom and then query; or at least
a numeric pattern in the website’s URLs. Unfortunately, no such table publicly
exists, and instead we must recourse to random walk sampling.

The simplest random walk, selects an incident edge at every vertex with
equal probability. That is, a Markov chain over the vertices of G with transition
probability matrix

Pij =

{
1/di j ∈ N(i)

0 otherwise

where N(i) denotes the set of neighbors returned by Arist.getSimilar for
an artist vertex i. Such a walk converges to it’s stationary distribution after
a finite number of steps, where the number of steps it takes to convergence is
called its mixing time. And a long enough walk will converge no matter we
start. Hence, our choice of an initial artist sample is irrelevant, so as long as we
sample long enough. Despite this walk’s simplicity, its stationary distirubiton is
not uniform for typical networks. In fact, it can be shown that the probability
of terminating the walk at a vertex is directly proportional to the degree of the
vertex. A finite, irreducible, and aperiodic Markov chain (such as the one above)
reaches a stationary distribution whenever π = πP , where π is the distribution
of vertices (states). For the simple chain just described, πi = di/2m is its

2

https://github.com/pylast/pylast
http://www.quora.com/How-many-artists-and-albums-does-last-fm-have-in-its-database

stationary distribution, where m is the number of edges in the graph, as

πP = {
∑

j∈N(i)

dj
2m

1

dj
}ni=1

= { di
2m
}ni=1

= π

In our case, Artist.getSimilar yields varying neighbor sets anywhere from 1 to
250 as per the API’s construction. Due to the variance in degrees, this walk will
not yield a uniform sample. There exists walks such as the Metropolis-Hastings
that can converge to a uniform distribution, with probability transition matrix
PMH
ij :

PMH
ij =


1/max(di, dj) i 6= j, j ∈ N(i)

1−
∑
j∈N(i) Pij i = j

0 otherwise

Unfortunately this requires knoweldge of the degree for each adjacent vertex,
translating in up to 250 API calls. This would quadratically slow down our
sampling, and so is infeasible. Instead we use a variation on the simple random
walk, a max degree walk that converges to a uniform stationary distribution.
The probability transition matrix PMD of this walk is

PMD
ij =


1/dmax i 6= j, j ∈ N(i)

1− di/dmax i = j

0 otherwise

where dmax is the maximum degree over the entire graph. By construc-
tion we have that dmax = 250 so that we need only to call one request for
Artist.getSimilar per vertex. It was also experimentally showed that for a power
law degree distribution, which Last.fm also follows, the mixing time for the max
degree walk is approximately 20log(|V |). Thus, as per the Last.fm employee’s
comment, the mixing time is approximately 160. We decide the necessary num-
ber of samples below, when defining a genre as simply a tag.

4 Defining a Genre
From the perspective of information retrieval we can treat each artist (docu-
ment) as a bag-of-words or multiset of tags (terms), where order is ignored.
In document processing the unorderd assumption can be constrictive, but in
our case where folkosonomies are naturally unordered, the bag-of-words model
works perfectly. Let a tag be denoted t, and an artist D = {t1, . . . , tn}.

Given a set of documents, there are many ways we could define a genre. For
each definition we define a distance, so that the genres may be clustered later

3

on. We cover 3 genre definitions, each more sophisticated and contemporary
than the last. First, we define a genre to be simply a tag, one of any found in
any document while sampling. Second, we define it as a vector of documents.
And third, we define a genre as a probabilitiy distribution over tags.

4.1 Simple Co-occurences
In this view, we define each tag to be its own genre. A reasonable way to define a
distance between two terms in a document, then, is as the empirical probability
that they co-occur:

d(t1, t2) = p̂ =
1

N

∑
D

[t1, t2 ∈ D]

And given the random walk procedure described above, each [t1, t2 ∈ D]
can be thought of as an independent Bernoulli trials, so that we can create a
confidence interval for these distances. We could use a Normal approximation,
but a general rule of thumb is to have np ≥ 10, and the relative frequencies of
our tags in documents follows a power law so that it will be innappropriate to
use this approximation for many tags. Instead, we use a Chernoff bound. Let p
be E[p̂], the true probability that two tags co-occur. Using a two sided form of
the bound

p(| p− p̂ |≥ θ) ≤ 2 exp(− θ2

2p+ θ
n)

so that we can adjust the number of samples necessary in the walk to achieve
some errorp(| p−p̂ |≥ θ) ≤ α in our distances. See that p < 1 implies θ2

2p+θ ≥
θ2

2+θ
so that we want

n ≥ 2 + θ

θ2
ln

2

α

samples to achieve the bound. For example, if we wanted d(t1, t2) to be
within 0.05 of p with a confidence of α = 0.1, then we would need at least 2457
samples (� 100 million) for t1 and t2. For visualization purposes, we’ll use only
the top 200 tags which occur in over 90% of all documents so that we need only
sample 2457/0.9 ≈ 2730 artists. A symmetric distance matrix can be created
from this, with number of rows and columns equal to V choose 2, where V is
the number of unique terms seen on the walk. The following in Figure 4.1 is a
list of the highest occuring 200 tags collected from a sample:

4.2 Latent Semantic Indexing (LSI)
Here, we define a genre to be a vector. The main idea in LSI is also to exploit
term co-occurence, but by incorporating the co-occurences at a higher level.
That is if term s and u never co-occured together, but each co-occured often
with t, then LSI will view all three terms as co-occuring with one-another.

4

Figure 4.1: Top 200 occuring tags from a random walk sample of 3000.

Further, LSI will also de-emphasize terms that co-occur often with most other
terms.

We first convert each artist into a vector of tags. That is, a vector consisting
of weights for all tags it contains, and zeros elsewhere for all other tags seen
in any other artist. The Last.fm API call Artist.getTopTags returns integer
weights from 1 to 100 for each tag. We naturally use these as weights in each
document vector. The documents are then arranged as a rows in a document-
term matrix M . Singular value decomposition is then applied, so that we can
write

M = UΣV >

where Σ contains the singular values. As Σ1,1,Σ2,2, . . . are ordered in sig-
nificance, we can keep only the first k and continue the multiplication with U
and V > to achieve a projection into a lower rank space. We call this lower rank
representationMk. We can then use a distance function between vectors to find
the similarity of terms. A cosine distance is customary for LSI. Let t1 and t2
denote vectors in Mk. The cosine distance is

d(t1, t2) =
t1 · t2
‖t1‖ · ‖t2‖

In Figure 4.2, we see 8 topics from LSI, with k = 200, perfomed on the same
sample of 3000 artists as with co-occurence genres:

4.3 Latent Dirichlet Allocation (LDA)
The algorithm LDA, modeled after LSI and probabilistic LSI, constructs a gen-
erative model for terms within documents. Let k be the number of pre-specified
topics, V be the number of unique terms across the entire corpus, α be a positive
k-vector, and η be a scalar. LDA uses the following generative model:

5

Figure 4.2: 8 topics from LSI, k = 200, perfomed on a sample of 3000 artists.

1. For each topic,

(a) Draw a distribution over words βk ∼ DirV (η).

2. For each document,

(a) Draw a vector of topic proportions θd ∼ Dir(α).

(b) For each word,

i. Draw a topic assignment Zd,n ∼Mult(θd), Zd,n ∈ {1, . . . , k}.
ii. Draw a word Wd,n ∼Mult(βzd,n), Wd,n ∈ {1, . . . , V }.

Unfortunately the posterior on β and θ is intractible. But, we can used Gibbs
sampling to estimate the most likely distribution matrices β̂ and θ̂. These are
respectively the most likely term distributions per topic, and topics distributions
per document.

A similar distance measure can be used for the these per topic term dis-
tributions, just as in the naive co-occurrence method. Unfortunately the fa-
miliar Kullback–Leibler distance is not symmetric, so instead we use another
f -divergence, Hellinger distance:

H(p, q) =
1√
2

∑
i

(
√
pi −

√
qi)

2 ∈ [0, 1]

In Figure 4.3 are the results on the same sample as with co-occurences of 8
topics found with LDA, with k = 200 topics:

6

Figure 4.3: 8 LDA with 200 topics, showing 10 most pertinent terms, from a
sample of 3000 artists.

5 Flat Clustering
I explore two methods of flat clustering that specialize in the clustering of genre
topics rather than terms: Self-Organizing Map (SOM) and Correlation Clus-
tering (CC). The more familiar K-means clustering is difficult in this situation
as we can retrieve likely groups of tags but not visualizing how far apart those
clusters are, i.e. how they are spatially related to each other, as we have only
the distances between tags or topics. The methods SOM and CC, on the other
hand will generate both spatial relations and distances simultaneously.

SOM is an unsupervised learning algorithm that projects high dimensional
data onto a 2 dimensional plane, from which one can visually see groups that
are close together. The algorithm is neurologically motivated, and it takes as
input a set of high-dimensional training vectors T = {t1, . . . , tn}. Depending
on our genre definition these may be distribution of tags or subvectors resultant
from LSI. We repeat the following process:

1. Initialize a 2-dimensional grid with small norm random “node vectors”
of the same dimension as training vectors: ni,j . Another initialization
method is to sample vectors from the subspace spanned by the two largest
eigenvectors of T .

2. Select a training vector, t.

3. Given some vector distance function d, find the closest vector nc according
to the genre’s definition of distance.

4. Update the nodes of the grid as ni,j := ni,j + λd(t, nc), where λ is the

7

Figure 5.1: SOM performed on LDA with 10 topics, 400 iterations, and learning
rate of 0.05.

learning rate. We make this learning rate a decreasing function of time
and distance from the node nc.

After several iterations, the map converges to a space that resembles the topol-
ogy of the training vectors. Then, each of the training vectors can simply be
places a top the coordinate of the closest node on the grid to achieve a 2-
dimensional clustering of the high dimensional input, whether they be topics
from LSI or LDA.

A problem still inherent to the high-dimensional plotting is how to display
what each vector is. There are several thousand tags in each of the vectors,
and it’s infeasible to display these distributions for each point on the map. For
LSI we use a simple tf-idf score fore each term, and display the top m terms
according to this scoring. For LDA, we use a method from [Blei 2009] analogous
to tf-idf:

scorek,v = β̂k,v log(
β̂k,v

(
∏K
j=1 β̂k,v)

1/K
)

for a term v and topic k out of K topics, and a posterior topic distribution
matrix β̂. Result of the SOM clustering over a uniform sample of 105 artists,
with an LDA of 10 topics, and a grid size of 10 x 10 are shown in Figure 5.1.

A problem with SOM clustering, however, is that a high resolution grid size
is required to avoid overlap with a high number of topics. Further, higher grid
size accommodates a finder intuitive spatial understanding of the clustering.

8

Unfortunately, larger grid sizes requires a quadratically larger computation size
that becomes infeasible with SOM’s large complexity coefficient. It would be
very convenient to cluster topics according to an infinitely high resolution 2-
dimensional place.

To solve this problem one can use a correlation coefficient based clustering
method. In this method we aim to optimize the correlation between high-
dimensional distances to lower dimensional ones. Similar to the random as-
signment of neural nodes on the grid for SOM, for each high dimensional vector
ti ∈ RD, N � 1 we assign a coordinate xi ∈ R2 within an infinitely resolute grid.
We then list the n choose 2 pairwise distances DT and Dx, DT = {d(ti, tj)}i,j
and Dx with the same enumerate order. The correlation coefficient is then
a “fitness function” for how well the 2-dimensional coordinates represent the
distances in high-dimensional space:

ρDT ,Dx
=

cov(DT , Dx)√
var(DT)

√
var(Dx)

=

∑
(ti − µt)2(xi − µx)2√∑

(ti − µt)2
√∑

(xi − µx)2

As the grid size is infinite, the sample space for {xi} is huge. To optimize
this ρDT ,Dx

, and overcome the sample space size difficulties, we can employ
a genetic algorithm (GA). GAs naturally work well as parallelized algorithms,
so that we can run it fairly quickly. GAs initialize a population of genomes,
and the fitness (ρ in this case) of each is evaluated. Genomes are then mated
to create offspring which are some combination function of their parents. A
mutation function is usually also applied to the resultant children. In this
case we represent each genome as an ordered list of indices {xi}. I use a 2-
point crossover mating function. To allow for changes in coordinates, I define
mutation to be a Gaussian wiggle on each coordinate.

6 Nested Hierarchical Clustering
Hierarchical clustering generates a taxonomic tree that is generally more infor-
mative than an unstructured flat clustering. Further, while flat clustering usu-
ally requires a parameter for the number of clusters and is non-deterministic,
hierarchical clustering does not and is deterministic.

These algorithms can take either a top-down or bottom-up approach. In
each, it requires a distance function between items. In the previous section we
have shown how to precompute a distance matrix between all pairs of tags, so
that we these distances don’t need to be calculated in the clustering step. In
bottom-up clustering (or agglomerative clustering) pairs of items or clusters are
merged, until there is just one remaining cluster. We choose a function that
takes in a pair of items or clusters and outputs a real value, representing a
merging distance. At each step, we choose the items or clusters that minimize
this function.

9

We can view this nested clustering in the form of a dendrogram, where
groups are represented as merged by a connected line. And we draw this merge
on the y-axis (or radius) at a point corresponding to the distance that our merge
function returns. This dendrogram can then be cut, horizontally, to generate an
arbitrary number of clusters. That is, we can return to flat clustering via this
hierarchical clustering. Choosing the y-axis point at which to point is essentially
the same decision as choosing the number of clusters for a flat clustering.

One convenient choice for a merging function is single-linkage, where it out-
puts the minimum distance between members of two clusters. This method
is quite local, and can allow for largely disparate clusters to be joined by a
mere single strong connection. Another option is complete clustering where the
merge function instead outputs the maximum distance between members of two
clusters. With this, all the tags of a cluster can influence the connection, as
opposed to single-linkage. For the purposes of visualizing clusters, the linkage
type will strongly affect the results, each benefiting different aspects of related
genres. As fickle singular connections are often in remixing in music, yet do
not signify a sub-genre, we choose complete-linkage. A display of the results for
co-occurence distances with complete-linkage is shown in Figure 6.1.

7 Comparison of Methods and Uses
The folksonomy of tags tends to be quite informal and at times arbitrary, some-
times referring to the manner in which an artist was listened to rather than
what it sounds like. To further complicate the matter, several terms may refer
to the same thing (synonymy), while the same term may have multiple unre-
lated meanings (polysemy). Using co-occurences as distances completely ignores
the issue, and takes terms with the highest marginal probabilities so that only
the most agreed upon tags (most used) will be used for distances. LSI, on the
other hand, uses a lower dimensional approximation to project synonyms ontop
of each other via SVD. This attempts to solve the problem of synonymy by
projecting terms together. However, it still does not capture the subtly with
polysemy. But it still proves to be a great improvement over co-occurences.
Lastly, LDA models topics as distributions solving both synonymy and poly-
semy. While LSI and LDA both mitigate linguistic problems, they carry greater
difficulty in displaying what each genre is about.

References
• Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008.

Introduction to Information Retrieval. Cambridge University Press, New
York, NY, USA.

• Asad Awan , Ronaldo A. Ferreira , Suresh Jagannathan , Ananth Grama.
Distributed uniform sampling in real-world networks. 2004.

10

Figure 6.1: Complete-linkage hierarchical clustering on the top 200 tags on a
sample of 3000 artists.

11

• David R. Karger and Clifford Stein. 1996. A new approach to the mini-
mum cut problem. J. ACM 43, 4 (July 1996), 601-640.

• David M. Blei, Thomas L. Griffiths, Michael I. Jordan, Joshua B. Tenen-
baum. Hierarchical Topic Models and the Nested Chinese Restaurant
Process. 2004.

• Bishop, C.M., Svensén, M. and Williams, C.K.I. (1998). GTM: The Gen-
erative Topographic Mapping. Neural Computation 10(1): 215-234.

• Kohonen, T. (1982). Self-organized formation of topologically correct fea-
ture maps. Biological Cybernetics, 43:59-69.

• Levy, M. & Sandler, M. (2007). A Semantic Space for Music Derived from
Social Tags. 8th International Conference on Music Information Retrieval
(ISMIR 2007) .

• David M. Blei, Andrew Ng, Michael Jordan. Latent Dirichlet allocation.
JMLR (3) 2003 pp. 993-1022.

• AlSumait, Loulwah. Topic Significance Ranking of LDA Generative Mod-
els. 2010.

• Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cambridge Univer-
sity Press, New York, NY, USA.

• Papadopoulos et al. A Graph-based Clustering Scheme for Identifying
Related Tags in Folksonomies. 2001.

• Mark Levy & Mark Sandler (2008) Learning Latent Semantic Models for
Music from Social Tags, Journal of New Music Research, 37:2, 137-150.

12

	Summary
	Motivation
	Sampling Tag Data
	Defining a Genre
	Simple Co-occurences
	Latent Semantic Indexing (LSI)
	Latent Dirichlet Allocation (LDA)

	Flat Clustering
	Nested Hierarchical Clustering
	Comparison of Methods and Uses

